
A1-HOMOTOPY EQUIVALENCES AND A THEOREM OF WHITEHEAD

EOIN MACKALL

Abstract. We prove analogs of Whitehead’s theorem (from algebraic topology) for both the Chow
groups and for the Grothendieck group of coherent sheaves: a morphism between smooth projective
varieties whose pushforward is an isomorphism on the Chow groups, or on the Grothendieck group
of coherent sheaves, is an isomorphism. As a corollary, we show that there are no nontrivial naive
A1-homotopy equivalences between smooth projective varieties.

1. Introduction

A1-homotopy theory is a contemporary subject that applies homotopic techniques to algebraic
varieties by working with a model category structure on a (twice localized) collection of simplicial
presheaves of varieties [MV99, Lev16]. Recent works (e.g. [AM11, AF14, DPOsr19]) have used
this approach both to classify A1-weak equivalence classes of varieties and to give new insights
on classical problems from algebraic geometry. By contrast, there is a more hands-on variant of
A1-homotopy theory, introduced in either [VSF00] or [MVW06], that is both considerably more
naive than the model category construction of A1-homotopy theory and considerably less studied.

In this naive variant, an A1-homotopy is defined on the group of finite correspondences between
smooth varieties (see Definition 2.1.1 below); already in this framework the productX×A1 is naively
A1-homotopy equivalent with X for any smooth variety X. This text stemmed from studying what
properties of a variety are preserved under this naive version of A1-homotopy equivalence. Our main
result, in this regard, is Corollary 4.1.6 that shows: if X and Y are smooth projective varieties that
are naively A1-homotopy equivalent, then X and Y are isomorphic.

There are two observations that go into the proof of Corollary 4.1.6. The first observation, that
comprises most of Section 2 and Section 3, is that the naive definition of A1-homotopy descends
to the level of rational equivalence classes of cycles. To be precise, we show that if two finite
correspondences are A1-homotopic then they have the same rational equivalence class in the Chow
ring. In particular, the morphisms that these correspondences induce on Chow groups are identical.
This is akin to the situation in ordinary algebraic topology where homotopic maps induce identical
pushforwards on homology.

The second observation that goes into the proof of Corollary 4.1.6 is an analog of Whitehead’s
theorem for the Chow groups of smooth projective varieties. To explain this analogy, recall that
the classical version of Whitehead’s theorem (e.g. from [Hat02, Theorem 4.5]) is the statement: a
continuous map f : X → Y between connected CW complexes X and Y with the property that
the pushforward on homotopy groups

f∗ : πn(X)→ πn(Y )

is an isomorphism for every n ≥ 1 is a homotopy equivalence. Together with Hurewicz’s theorem
(e.g. from [Hat02, Corollary 4.33]), Whitehead’s theorem implies that a continuous map f : X → Y
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between simply connected CW complexes X and Y with the property that the pushforward on
singular homology

f∗ : Hn(X,Z)→ Hn(Y,Z)

is an isomorphism for all n ∈ Z is a homotopy equivalence.
Our analog of Whitehead’s theorem for Chow groups (Theorem 4.0.1 below) is the following

direct generalization: a morphism f : X → Y between two smooth projective varieties X and Y
has the property that the pushforward on Chow groups

f∗ : CHn(X)→ CHn(Y )

is an isomorphism for all n ∈ Z if and only if f is an isomorphism. The proof of this statement
uses only elementary properties of Chow groups together with an application of Zariski’s Main
Theorem. Following the same argument, we also improve on the classical variant for singular
homology by showing (in Corollary 4.0.2) that a morphism f : X → Y , between smooth projective
complex varieties, that induces an isomorphism on the singular homology of the underlying complex
manifolds

f∗ : Hn(X(C),Z)→ Hn(Y (C),Z)

for all even integers n, is an isomorphism.
Essentially all of the results that we’ve mentioned so far (for cycles and Chow groups) also hold for

the Grothendieck group of coherent sheaves. Throughout this text, we formulate and prove results
for both the Chow groups and the Grothendieck group of coherent sheaves side-by-side to emphasize
their similarity. In particular we introduce a notion of A1-homotopy for the G-correspondences
considered in [Man68], we show that naively A1-homotopic G-correspondences induce identical
maps on G-theory, and we prove an analog of Whitehead’s theorem for the Grothendieck group of
coherent sheaves of smooth and projective varieties.

Lastly, we note that it should be possible to prove the results obtained here in a unified way
through the use of Voevodsky’s category of motives with compact support. However, in the current
state of affairs, this would mean that we would need to localize at p whenever we wanted to make
statements over an imperfect field of characteristic p as it’s not known, at the moment, whether
integral Borel–Moore motivic homology agrees with integral higher Chow groups in this setting
(see [Tot16, Section 5] for a convenient summary of known results in this regard). For this reason,
it would seem that the content here is both simpler and more general than the corresponding
statements made at the level of geometric motives with compact support.

We turn now to an outline of this text. Section 2 is mainly preliminary. There are a number of
places where it’s important to remember when a construction happens at the level of cycles or, at
the level of cycle classes and we recall them all, in detail, in this section.

Section 3 is the most technical section of this text because, in order to show that A1-homotopic
finite correspondences have the same cycle class, we need to be able to compose at the level of cycle
classes. This means that we have to compactify the finite correspondence that realizes an explicit
A1-homotopy and check that we haven’t altered the restrictions along the closed immersion at 0
and 1 under this compactification.

Section 4 is devoted to analogs of Whitehead’s theorem for both the Chow groups and for
the Grothendieck group of coherent sheaves. We proceed here by proving general results about
the structure of a morphism between projective varieties depending on properties of the resulting
pushforward on either the Chow groups of the Grothendieck group. Combining all of these results
with Zariski’s Main Theorem gives our two analogs of Whitehead’s theorem.

Notation and Conventions. In this text, a variety is a separated and geometrically integral
scheme of finite type over an arbitrary (but fixed) base field k.
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2. Recollections on correspondences

This section is preliminary. Here we recall the definitions and properties of finite correspondences,
Chow correspondences, and G-correspondences that are used in Section 3. We also include here
the definition of A1-homotopy for finite correspondences and we introduce corresponding notions
of A1-homotopy for both Chow correspondences and G-correspondences.

Throughout this section we write Zr(X) for the free abelian group of dimension-r cycles on a
variety X; we write CHr(X) for the Chow group of dimension-r cycles on X, i.e. the quotient of
Zr(X) by the subgroup of cycles rationally equivalent to zero; we write G(X) for the Grothendieck
of group of coherent sheaves on X. When appropriate, we may omit the subscript and simply write
CH(X) to mean the direct sum of the groups CHi(X) over all integers i ∈ Z. Finally, we let X and
Y be two arbitrary smooth varieties defined over the base field k.

2.1. Finite Correspondences. Recall (from [MVW06, Definition 1.1]) that an elementary corre-
spondence from X to Y is an integral subscheme W ⊂ X × Y with finite and surjective projection
to X. A finite correspondence from X to Y is a formal integral linear combination of elementary
correspondences. In this text, we write Cor(X,Y ) for the group of all finite correspondences from
X to Y . We remark there is an obvious inclusion

(no.1) Cor(X,Y ) ⊂ Zdim(X)(X × Y )

given by considering any finite correspondence as a cycle on X × Y .
If Z is another smooth variety, then there is a well-defined composition of finite correspondences

Cor(X,Y )× Cor(Y,Z)→ Cor(X,Z)(no.2)

(α, β) 7→ α ◦ β

defined on elementary correspondences α = V and β = W as the pushforward cycle, along the
projection X × Y × Z → X × Z, of the intersection cycle (V × Z) · (X × W ) on X × Y × Z.
For the definition of the intersection cycle see [MVW06, Definition 17A.1]; note that both the
intersection cycle and the pushforward cycle are well-defined since V × Z and X ×W intersect
properly and each irreducible component of the intersection cycle (V × Z) · (X ×W ) has closed
image in X×Y by [MVW06, Lemma 1.7]. Composition for arbitrary finite correspondences is then
defined distributively.

A natural source of correspondences from X to Y are morphisms. For any morphism f : X → Y
one can associate the graph Γf ⊂ X × Y of f as a subvariety of the product X × Y . This gives an
inclusion

Hom(X,Y ) ⊂ Cor(X,Y )(no.3)

f 7→ Γf

that behaves well with finite correspondences in the sense that if Z is another smooth variety then,
for any two morphisms f : X → Y and g : Y → Z, one has an equality

(no.4) Γg ◦ Γf = Γg◦f

as finite correspondences in Cor(X,Z). In the special case where Y = X, the identity morphism
for X is identified, under the inclusion (no.3), with the diagonal

(no.5) X = ∆X ⊂ X ×X

considered as a finite correspondence from X to itself.
In this text we’ll be concerned with the notions of A1-homotopic finite correspondences and with

naive A1-homotopy equivalences of smooth varieties:
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Definition 2.1.1 ([MVW06, Definition 2.25]). We say that finite correspondences α, β ∈ Cor(X,Y )
are A1-homotopic if there exists a finite correspondence h ∈ Cor(X ×A1, Y ) and equalities of finite
correspondences in Cor(X,Y )

α = h ◦ Γi0 and β = h ◦ Γi1

where the morphisms

i0 : X = X × {0} → X × A1 and i1 : X = X × {1} → X × A1

are the corresponding inclusions.
We say that two smooth varieties X and Y are naively A1-homotopy equivalent if there exist

morphisms f : X → Y and g : Y → X such that the graph Γg◦f is A1-homotopic to the diagonal
∆X and the graph Γf◦g is A1-homotopic to the diagonal ∆Y .

2.2. Chow Correspondences. In this text a Chow correspondence from X to Y is an element of
CHdim(X)(X×Y ). Typically, a Chow correspondence is just called a correspondence in the literature
(cf. [Ful98, Definition 16.1.1], [EKM08, Definition 62.1]) but, we add Chow here to distinguish the
notion from both finite correspondences and G-correspondences. Because of the inclusion (no.1),
we get a map

(no.6) Cor(X,Y )→ CHdim(X)(X × Y )

that associates to any finite correspondence its rational equivalence class.
Similar to finite correspondences, Chow correspondences have a well-defined composition between

proper varieties. That is to say, if X, Y , and Z are smooth varieties and if Y is proper, then there
is a composition

CHdim(X)(X × Y )× CHdim(Y )(Y × Z)→ CHdim(X)(X × Z)(no.7)

(α, β) 7→ α ◦ β

defined for any two Chow correspondences α and β as the proper pushforward along the projection
X × Y × Z → X × Z of the intersection product (α× [Z]) · ([X]× β) in CHdim(X)(X × Y × Z).

By construction, composition of finite correspondences and composition of Chow correspondences
commute with the maps (no.6) assigning a finite correspondence to its cycle class. That is to say,
the cycle class of the composition of two finite correspondences is the composition of the associated
Chow correspondences whenever both compositions are defined. This follows from [Ful98, Chapter
8 Section 2, Chapter 20 Section 4, and Example 7.1.2].

Chow correspondences define morphisms on the Chow groups of varieties. If X is proper and if
Z is a smooth variety, then for any Chow correspondence α ∈ CHdim(X)(X × Y ) one can associate
the morphism

α∗ : CH(Z ×X)→ CH(Z × Y )(no.8)

β 7→ πZY ∗(π
∗
Y X(α) · π∗ZX(β))

defined on a cycle class β ∈ CH(Z × X) as the proper pushforward, along the projection map
πZY : Z × Y × X → Z × Y , of the intersection product of the flat pullback π∗Y X(α), along the
projection πY X : Z × Y × X → Y × X, and the flat pullback π∗ZX(β), along the projection
πZX : Z × Y ×X → Z ×X. If α = [Γf ] is the cycle class of the graph of a morphism f : X → Y ,
then one has

(no.9) [Γf ]∗(β) = (IdZ × f)∗(β)

for every β ∈ CH(Z×X) by [EKM08, Proposition 62.4] or [Ful98, Proposition 16.1.1]. In a similar
fashion, if Y is proper then for any Chow correspondence α ∈ CHdim(X)(X×Y ) and for any smooth

4



variety Z one can associate the morphism

α∗ : CH(Y × Z)→ CH(X × Z)(no.10)

β 7→ πXZ∗(π
∗
XY (α) · π∗Y Z(β))

with maps πXY , πXZ , and πY Z defined similar to the above (but, with components in reverse
order). If α = [Γf ] is the cycle class of the graph of a morphism f : X → Y , then

(no.11) [Γf ]∗(β) = (f × IdZ)∗(β)

for every β ∈ CH(Y × Z) by [EKM08, Proposition 62.4] or [Ful98, Proposition 16.1.1]. Note that
one has an equality

(no.12) α∗(β) = β ◦ α

for any pair of Chow correspondences α ∈ CHdim(X)(X × Y ) and β ∈ CHdim(Y )(Y × Z).

Definition 2.2.1. We say that Chow correspondences α, β ∈ CHdim(X)(X × Y ) are A1-homotopic

if there exists a Chow correspondence h ∈ CHdim(X)+1(X × A1 × Y ) and equalities

α = i∗0(h) and β = i∗1(h)

of Gysin pullbacks along the regular closed embeddings

i0 : X = X × {0} × Y → X × A1 × Y and i1 : X = X × {1} × Y → X × A1 × Y.

Lemma 2.2.2. Chow correspondences α, β ∈ CH(X × Y ) are A1-homotopic if and only if α = β.

Proof. Let π : X ×A1×Y → X ×Y denote the projection. Then, by the functorality of pullbacks,

i∗0 ◦ π∗(x) = IdX×Y (x) = i∗1 ◦ π∗(x)

for every x ∈ CH(X × Y ) so that the reverse direction follows by setting h = π∗(α) = π∗(β). The
forward direction is equally clear, noting that π∗ : CH(X×Y )→ CH(X×A1×Y ) is surjective. �

2.3. G Correspondences. Following [Man68], we define a G-correspondence from X to Y to be
an element of G(X × Y ). Similar to Chow correspondences, there is a well-defined composition of
G-correspondences for proper varieties. More precisely, if X, Y and Z are smooth varieties and if
Y is proper, then there is a composition

G(X × Y )×G(Y × Z)→ G(X × Z)(no.13)

(α, β) 7→ α ◦ β

defined for any two G-correspondences α and β as the proper pushforward, along the projection
πXZ : X×Y ×Z → X×Z, of the product π∗XY (α) ·π∗Y Z(β) inside of G(X×Y ×Z) of the pullbacks
along the projections πXY : X × Y × Z → X × Y and πY Z : X × Y × Z → Y × Z.

Similar to a Chow correspondence, a G-correspondence also defines pushforward and pullback
morphisms. That is to say, ifX is proper and Z is any smooth variety then for anyG-correspondence
α ∈ G(X × Y ) one can associate the pushforward morphism

α∗ : G(Z ×X)→ G(Z × Y )(no.14)

β 7→ πZY ∗(π
∗
Y X(α) · π∗ZX(β)).

If instead Y is proper, then there are pullback morphisms

α∗ : G(Y × Z)→ G(X × Z)(no.15)

β 7→ πXZ∗(π
∗
XY (α) · π∗Y Z(β)).
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In the above all maps are defined as in the previous subsection. As before, there are identities when
α = [OΓf

] is the class of the structure sheaf of the graph of a morphism f : X → Y (see [Man68,
Section 3, Corollary])

(no.16) [Γf ]∗(β) = (IdZ × f)∗(β)

for every β ∈ G(Z ×X) and

(no.17) [Γf ]∗(β) = (f × IdZ)∗(β)

for every β ∈ G(Y × Z). Finally, we note that one has an equality

(no.18) α∗(β) = β ◦ α
for any pair of G-correspondences α ∈ G(X × Y ) and β ∈ G(Y × Z).

Definition 2.3.1. We say that G-correspondences α, β ∈ G(X × Y ) are A1-homotopic if there
exists a G-correspondence h ∈ G(X × A1 × Y ) and equalities

α = i∗0(h) and β = i∗1(h)

of pullbacks along the regular closed embeddings

i0 : X = X × {0} × Y → X × A1 × Y and i1 : X = X × {1} × Y → X × A1 × Y.

The following proof is identical to that of Lemma 2.2.2.

Lemma 2.3.2. G-correspondences α, β ∈ G(X × Y ) are A1-homotopic if and only if α = β. �

3. Homotopic correspondences

In this section we compare the notions of A1-homotopy for both finite and Chow correspondences.
The main result of this section, saying that A1-homotopic finite correspondences are A1-homotopic
as Chow correspondences, appears as Proposition 3.1.1 below. The proof of this result (especially
Lemma 3.1.3 below) is closely related to, and should follow from, the equivalence between some
of Bloch’s higher Chow groups [Blo86] and the usual Chow groups; we’ve chosen to spell out the
details here since they are absent from the classical sources.

In this section we also extend the definition of naive A1-homotopy equivalence to a notion of naive
A1-G-homotopy equivalence using our naive definition of A1-homotopy between G-correspondences
given in Section 2. This allows us to formally mimic the results we obtain for the Chow groups but
in the setting of G-theory.

3.1. A1-homotopic finite and Chow correspondences. Our goal now is to prove the following:

Proposition 3.1.1. Let X and Y be smooth proper varieties. Suppose that finite correspondences
α, β ∈ Cor(X,Y ) are A1-homotopic. Then α, β are A1-homotopic as Chow correspondences.

As an immediate corollary, we find that A1-homotopic finite correspondences induce identical
pushforwards on Chow groups.

Corollary 3.1.2. Let X and Y be two smooth and proper varieties. Suppose that two finite corre-
spondences α, β ∈ Cor(X,Y ) are A1-homotopic. Then the morphisms

α∗, β∗ : CH(X)→ CH(Y )

induced by the cycle classes of α, β via (no.8) are equivalent.

Proof. The morphism induced by α depends only on its rational equivalence class. By Lemma 2.2.2
and Proposition 3.1.1, this is the same as the rational equivalence class of β. �

Before giving the proof of Proposition 3.1.1, we need a technical lemma.
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Lemma 3.1.3. Let α, β ∈ Cor(X,Y ) be finite correspondences. Suppose that h ∈ Cor(X × A1, Y )
is a finite correspondence satisfying

α = h ◦ Γi0 and β = h ◦ Γi1

where

i0 : X = X × {0} → X × A1 and i1 : X = X × {1} → X × A1

are the respective inclusions. Denote by

˜i∞ : X = X × {∞} → X × P1 and ϕ : X × A1 → X × P1

the canonical closed immersion and open complement. Write ĩ0 = ϕ ◦ i0 and ĩ1 = ϕ ◦ i1 for the
corresponding compositions. Let

π1 : X × (X × A1)× Y → X × Y, π2 : X × (X × A1 × Y )→ X × A1 × Y,

π̃1 : X × (X × P1)× Y → X × Y, and π̃2 : X × (X × P1 × Y )→ X × P1 × Y

denote the outside and rightmost projections respectively. Then there exists a cycle h̃ on X×P1×Y
with the following properties:

(1) (ϕ× IdY )−1(h̃) = h

(2) π̃−1
2 (h̃) and Γĩ0 × Y intersect properly

(3) π̃−1
2 (h̃) and Γĩ1 × Y intersect properly

(4) α = π̃1∗(π̃
−1
2 (h̃) · Γĩ0 × Y )

(5) β = π̃1∗(π̃
−1
2 (h̃) · Γĩ1 × Y ).

Proof. Each of the properties (1)-(5) are on the cycle level. Thus, it suffices to assume that h is
an irreducible (or prime) cycle corresponding to an integral closed subscheme h = U . A candidate

for h̃ is easy to find: set h̃ = Ū to be the closure of U in X × P1 × Y with the reduced induced
closed subscheme structure. Property (1) then follows immediately. The difficulty of the proof is
in checking properties (2)-(5).

We’re going to show properties (2) and (4), with properties (3) and (5) having the same proof
(modulo making some changes in notation). For this, it suffices to prove the equality (of schemes)

(no.19) π̃−1
2 (h̃) ∩ (Γĩ0 × Y ) = (IdX × ϕ× IdY )(π−1

2 (h) ∩ Γi0 × Y ).

Indeed, one has

dim(Γĩ0 × Y ) = dim(Γi0 × Y ) = dim(X × Y ) and dim(I) ≥ dim(π−1
2 (h)),

for any irreducible component I ⊂ π̃−1
2 (h̃), which shows that (2) follows from (no.19). Now, from

(2) and the equality (of cycles)

π̃1∗(π̃
−1
2 (h̃) · Γĩ0 × Y ) = π̃1∗

(
(IdX × ϕ× IdY )∗(π

−1
2 (h) · Γi0 × Y )

)
= π1∗(π

−1
2 (h) · Γi0 × Y )

= α,

one sees that (4) also follows from (no.19).
The lemma can then be completed as follows. We have equalities

π−1
2 (h) ∩ (Γi0 × Y ) = π−1

2 ((ϕ× IdY )−1(h̃)) ∩ (Γi0 × Y )

= (IdX × ϕ× IdY )−1(π̃−1
2 (h̃)) ∩ (Γi0 × Y )
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where the first line comes from property (1), and the second line is by commutativity of the
appropriate maps. Hence there is an equality

(IdX × ϕ× IdY )(π−1
2 (h) ∩ (Γi0 × Y )) = π̃−1

2 (h̃) ∩ (IdX × ϕ× IdY )(Γi0 × Y )

= π̃−1
2 (h̃) ∩ (Γĩ0 × Y )

since IdX × ϕ× IdY is an open immersion. �

Proof of Proposition 3.1.1. We’re going to show that the finite correspondences α and β define the
same cycle class in CHdim(X)(X × Y ) under the map (no.6). Similar to Lemma 3.1.3, we write

i0 : X = X × {0} → X ×A1, i1 : X = X × {1} → X ×A1, and ˜i∞ : X = X × {∞} → X × P1

for the corresponding closed immersions and we write

ϕ : X × A1 → X × P1

for the open complement of ˜i∞. We set ĩ0 = ϕ ◦ i0 and ĩ1 = ϕ ◦ i1 to be the compositions. We
denote by

πP : X × P1 × Y → X × Y and πA : X × A1 × Y → X × Y
the respective projections.

For the remainder of this proof, we’re going to refer to the following diagram.

CH(X × Y )

CH(X × Y ) CH(X × P1 × Y ) CH(X × Y )

CH(X × Y ) CH(X × A1 × Y ) CH(X × Y )

0

( ˜i∞×IdY )∗

π∗P

(ϕ×IdY )∗
(ĩ1×IdY )∗

(ĩ0×IdY )∗

π∗A

(i1×IdY )∗

(i0×IdY )∗

Here the middle column is the exact localization sequence associated to the closed immersion and
open complement ( ˜i∞×IdY , ϕ×IdY ); the left square of this diagram, with every map a flat pullback,
is commutative; the right square of this diagram, with horizontal arrows the Gysin pullbacks along
regular embeddings, is commutative in two different ways.

Suppose that h ∈ Cor(X × A1, Y ) is a finite correspondence realizing the A1-homotopy (in the

sense of Definition 2.1.1) between the finite correspondences α and β. Let h̃ be the cycle on
X × P1 × Y constructed from h as in the proof of Lemma 3.1.3. By property (1) of Lemma 3.1.3,

it follows that (ϕ× IdY )∗(h̃) = h.
As πA is an affine bundle, the flat pullback π∗A is surjective. Therefore there is an element

x ∈ CH(X × Y ) with π∗A(x) = h. Let y = π∗P (x) so that we can write

π∗P (x) = h̃+ (y − h̃) = h̃+ ( ˜i∞ × IdY )∗(z)

for some element z ∈ CH(X × Y ) with ( ˜i∞ × IdY )∗(z) = y − h̃.
By functorality of pullbacks, we have

(ĩ0 × IdY )∗ ◦ π∗P = Id∗X×Y = (ĩ1 × IdY )∗ ◦ π∗P .

From [EKM08, Proposition 55.3] it follows

(ĩ0 × IdY )∗ ◦ ( ˜i∞ × IdY )∗ = 0 = (ĩ1 × IdY )∗ ◦ ( ˜i∞ × IdY )∗.
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Putting everything above together we find

(ĩ0 × IdY )∗(h̃) = (ĩ0 × IdY )∗
(
h̃+ ( ˜i∞ × IdY )∗(z)

)
= (ĩ0 × IdY )∗ ◦ π∗P (x)

= (ĩ1 × IdY )∗ ◦ π∗P (x)

= (ĩ1 × IdY )∗
(
h̃+ ( ˜i∞ × IdY )∗(z)

)
= (ĩ1 × IdY )∗(h̃).

But the cycle classes of α, β in CHdim(X)(X × Y ) are determined by the Gysin pullbacks

α = (ĩ0 × IdY )∗(h̃) and β = (ĩ1 × IdY )∗(h̃)

because, on the level of cycle classes, one has

α = h̃ ◦ Γĩ0 and β = h̃ ◦ Γĩ1

by properties (4) and (5) of Lemma 3.1.3. One gets the result by comparing with (no.10), (no.11),
and (no.12) above. �

Example 3.1.4. Let P1 have coordinates x, y and let P2 have coordinates X,Y, Z. Consider the
graph h = Γg(t) of the morphism

g(t) : P1 × A1 → P2

defined by the rule

([x : y], t) 7→ [x2 : txy : y2].

Let i0 : P1 → P1 × A1 be the inclusion at 0 and i1 : P1 → P1 × A1 be the inclusion at 1. It’s not
difficult to check that g(t)◦ i0 : P1 → P2 is a double cover of the line Y = 0 while g(t)◦ i1 : P1 → P2

is the standard Veronese embedding. Then the morphisms

(g(t) ◦ i1)∗, (g(t) ◦ i0)∗ : CH(P1)→ CH(P2)

are the same by Corollary 3.1.2 because h is an explicit A1-homotopy between g(t)◦ i0 and g(t)◦ i1.
This could also be checked directly since

(g(t) ◦ i1)∗, (g(t) ◦ i0)∗ : CH0(P1) = Z ∼−→ Z = CH0(P2)

is an isomorphism and

(g(t) ◦ i1)∗, (g(t) ◦ i0)∗ : CH1(P1) = Z ( Z = CH1(P2)

is the inclusion with image of index 2.

Corollary 3.1.5. Let X and Y be two smooth and proper varieties. Suppose that X and Y are
naively A1-homotopy equivalent by morphisms f : X → Y and g : Y → X. Then the morphisms

f∗ : CH(X)→ CH(Y ) and g∗ : CH(Y )→ CH(X)

are mutually inverse isomorphisms.

Proof. By (no.9) and (no.5) we find ∆X∗,∆Y ∗ are the identities. By (no.4), [EKM08, Proposition
62.8], and Proposition 3.1.1 there are equalities

Γg◦f∗ = (Γg ◦ Γf )∗ = Γg∗ ◦ Γf∗ = ∆X∗

and

Γf◦g∗ = (Γf ◦ Γg)∗ = Γf∗ ◦ Γg∗ = ∆Y ∗

which completes the proof. �
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3.2. A1-G-homotopy equivalences. In this subsection we extend our results to G-theory in anal-
ogy with the results that have been obtained above. Using a substantially simplified version of
homotopy equivalence that allows us to work with G-correspondences, the process turns out to be
much easier.

Definition 3.2.1. We say that two varieties X and Y are naively A1-G-homotopy equivalent if
there exist morphisms f : X → Y and g : Y → X such that both the class of the structure sheaf
OΓg◦f and the class of O∆X

are A1-homotopic G-correspondences in G(X × X) and, the class of

OΓf◦g and the class of O∆Y
are A1-homotopic as G-correspondences in G(Y × Y ).

The following corollary is then immediate from Lemma 2.3.2.

Corollary 3.2.2. Let X and Y be two smooth and proper varieties. Suppose that α, β ∈ G(X×Y )
are two A1-homotopic G-correspondences. Then the morphisms

α∗, β∗ : G(X)→ G(Y )

induced by α, β via (no.14) are equivalent. �

Similarly, we get an analog of Corollary 3.1.5 that holds in G-theory with basically the exact
same proof as before (modulo notational changes).

Corollary 3.2.3. Let X and Y be two smooth and proper varieties. Suppose that X and Y are
naively A1-G-homotopy equivalent by morphisms f : X → Y and g : Y → X. Then the morphisms

f∗ : G(X)→ G(Y ) and g∗ : G(Y )→ G(X)

are mutually inverse isomorphisms. �

4. Analogs of Whitehead’s theorem

In this section, we conclude with analogs of Whitehead’s theorem from algebraic topology. Recall
that Whitehead’s theorem (see [Whi49] or [Hat02, Theorem 4.5] for a more recent treatment) is
the following statement: if a continuous map f : X → Y , between connected CW complexes X
and Y , induces an isomorphism on homotopy groups f∗ : πn(X) → πn(Y ) for every n ≥ 1, then
f is a homotopy equivalence. Combined with Hurewicz’s theorem, Whitehead’s theorem implies
that every continuous map f : X → Y , between simply connected CW complexes X and Y , that
induces an isomorphism on singular homology f∗ : Hn(X,Z)→ Hn(Y,Z) for all n ∈ Z is a homotopy
equivalence. The first analog of Whitehead’s theorem that we prove is directly related to this latter
statement:

Theorem 4.0.1. Let X and Y be smooth and projective varieties. Suppose that there is a morphism
f : X → Y such that the proper pushforward

f∗ : CH(X)→ CH(Y )

is an isomorphism. Then f is an isomorphism.

Indeed, in the course of the proof we’ll also show:

Corollary 4.0.2. Let X and Y be smooth and projective varieties over C. Let f : X → Y be a
morphism of varieties. If, for all even integers n ∈ Z, the map f induces isomorphisms

f∗ : Hn(X(C),Z)→ Hn(Y (C),Z)

between the singular homology of the associated complex manifolds X(C) and Y (C), then f is an
isomorphism.
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This corollary directly strengthens Whitehead’s theorem, in the restricted setting of complex
varieties and morphisms between them, by no longer requiring the simply connected condition and
by showing that f is an isomorphism rather than a homotopy equivalence.

Lastly, we show a second analog of Whitehead’s theorem that holds for G-theory.

Theorem 4.0.3. Let X and Y be smooth and projective varieties. Suppose that there is a morphism
f : X → Y such that the proper pushforward

f∗ : G(X)→ G(Y )

is an isomorphism. Then f is an isomorphism.

The strategy of proof for both Theorem 4.0.1 and Theorem 4.0.3 are the same. In both cases
we determine what injectivity, or surjectivity, on the given theory implies for morphisms between
arbitrary, not necessarily smooth, projective varieties. By combining these results in the case of
smooth varieties and applying a version of Zariski’s Main Theorem, we deduce that any morphism
having these properties is an isomorphism.

4.1. Whitehead’s theorem for Chow groups. We start with some observations on the Chow
groups of projective varieties.

Lemma 4.1.1. Let X be a projective variety. Then CHi(X) 6= 0 if and only if 0 ≤ i ≤ dim(X).
Moreover, if V is an integral dimension-i subscheme of X, then the class [V ] ∈ CHi(X) is nonzero
and not torsion.

Proof. Clearly CHi(X) is nonzero only if 0 ≤ i ≤ dim(X). On the other hand, let V ⊂ X be an
integral dimension-i subscheme of X. Let j : X → Pn be an embedding. Then j∗([V ]) = [j(V )] is
the class of an effective cycle in CHi(Pn) and by [Ful98, Example 2.5.2] this class is nonzero and not
torsion (it is the positive multiple deg(j(V ))[L] of the class of a dimension-i linear space L). �

Lemma 4.1.2. Let f : X → Y be a morphism between projective varieties X and Y . If the kernel
of the pushforward f∗ : CH(X)→ CH(Y ) is torsion, then f is finite.

Proof. Assume otherwise, that there is a positive dimensional subscheme V that has image a point
in Y . Then f∗([V ]) = 0 but, [V ] 6= 0 and [V ] is not torsion by Lemma 4.1.1. �

Remark 4.1.3. If the base field k = C and if X is a smooth projective complex variety, then the
statement of Lemma 4.1.1 can be modified to hold for the singular homology groups H∗(X(C),Z)
with degrees appropriately scaled by 2. More precisely, for every 0 ≤ i ≤ dim(X) the group
H2i(X(C),Z) is nonzero; moreover, if V is a projective, complex, and dimension-i subvariety of X
then the pushforward of the cycle class [V ] along the inclusion V ⊂ X is nonzero and nontorsion.
This is because pushforward maps commute with the cycle class maps from the Chow groups by
[Ful98, Lemma 19.1.2] so that one can again reduce to the case X = Pn.

Remark 4.1.4. Lemma 4.1.2 also holds in the setting of singular homology by the same reasoning.
If f : X → Y is a morphism between smooth projective complex varieties X and Y and, if the fiber
V = f−1(y) over a closed point y ∈ Y is positive dimensional, then one has an equality f∗([V ]) = 0
inside H2∗(Y (C),Z) since the cycle class commutes with pushforwards. But, the cycle class of V
in H2∗(X(C),Z) is nonzero and nontorsion because of Remark 4.1.3.

Lemma 4.1.5. Let f : X → Y be a morphism between projective varieties X and Y . Suppose that
the pushforward f∗ : CH(X)→ CH(Y ) is a surjection. Then the following statements hold:

(1) f is a surjection
(2) if f is moreover finite, then f is birational.
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Proof. Let V ⊂ Y be a nonempty open subscheme and let U = f−1(V ). Then the cartesian square
on the left below with horizontal arrows the canonical inclusions, induces the commuting square
on the right below by [Ful98, Proposition 1.7].

U X CH(X) CH(U)

V Y CH(Y ) CH(V )

j

f |U f

j∗

f∗ (f |U )∗

i i∗

Since i∗ is surjective by localization and f∗ is surjective by assumption, it follows that (f |U )∗
is surjective for every nonempty open subscheme V ⊂ Y . Hence f is surjective (if f were not
surjective, then f−1(Y \ f(X)) = ∅ and CH(∅) = 0, but CH(Y \ f(X)) 6= 0). This proves (1).

To prove (2), assume that f is finite. As f is both finite and surjective, X and Y have the same
dimension. Hence the surjective map

f∗ : Z = CHdim(X)(X)→ CHdim(Y )(Y ) = Z,

where f∗([X]) = deg(f)[Y ], is an isomorphism. It follows that deg(f) = 1 and f is birational. �

We turn our attention to smooth and projective varieties for the proof of Theorem 4.0.1.

Proof of Theorem 4.0.1. Our assumptions and Lemma 4.1.2 show that f is finite. Our assumptions
and Lemma 4.1.5 show that f is birational. The theorem then follows from Zariski’s Main Theorem
[Liu06, Chapter 4, Corollary 4.6] that says any finite and birational morphism between smooth and
projective varieties is an isomorphism. �

A similar proof works for Corollary 4.0.2:

Proof of Corollary 4.0.2. Note that Hj(X(C),Z) vanishes for j < 0 trivially, and for j > 2dim(X)
by Poincaré duality. By applying the first part of Remark 4.1.3 to this observation one gets the
equality dim(X) = dim(Y ). By Remark 4.1.4 the map f is finite, hence dominant. The isomorphism

f∗ : Z = H2dim(X)(X(C),Z)→ H2dim(Y )(Y (C),Z) = Z

has the property that f∗([X]) = deg(f)[Y ] by [Ful98, Lemma 19.1.2], showing that f is birational.
Therefore, by Zariski’s Main Theorem [Liu06, Chapter 4, Corollary 4.6], f is an isomorphism. �

We conclude with an application showing that naively A1-homotopy equivalent smooth and
projective varieties are isomorphic.

Corollary 4.1.6. Assume that X and Y are naively A1-homotopy equivalent smooth and projective
varieties. Then X and Y are isomorphic.

Proof. Apply Theorem 4.0.1 and Corollary 3.1.5. �

Example 4.1.7. As the lowest dimensional nonexample of Theorem 4.0.1, we remark that a smooth
conic curve C over Q without Q-rational points has Chow groups

CH0(C) = Z and CH1(C) = Z

so that CH(C) and CH(P1) are abstractly isomorphic but, there are no morphisms f : P1 → C
(constant or otherwise) so, P1 and C are never naively A1-homotopy equivalent.
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4.2. Whitehead’s theorem for G-theory. We work throughout this section with the G-theory
of a variety as developed in [Man69]. We use the notation τi(X) to denote the ith piece of the
topological filtration on the Grothendieck group G(X) of coherent sheaves on a variety X. By
definition, τi(X) is the subgroup of G(X) generated by classes of coherent sheaves supported in
dimension-i or less. We start with some observations on this filtration and on the G-theory of
projective varieties.

Lemma 4.2.1. Let X be a projective variety. Then the quotient τi(X)/τi−1(X) 6= 0 is nonzero if
and only if 0 ≤ i ≤ dim(X). Moreover, if V is an integral dimension-i subscheme of X and if x is
any closed point of X, then both of the following hold:

(1) the class [OV ] is nonzero and not torsion in τi(X)/τi−1(X)
(2) the difference of classes m[OV ]− n[Ox] ∈ τi(X) is nonzero and not torsion for every pair of

integers m,n ∈ Z with m 6= 0.

Proof. Clearly τi(X)/τi−1(X) 6= 0 only if 0 ≤ i ≤ dim(X). Conversely, let j : X → Pr be
a closed embedding and let L ⊂ Pr be linear subspace of dimension r − i. Then the element
m[OV ]− n[Ox] ∈ τi(X) of the lemma statement is nonzero and not torsion since

j∗(m[OV ]− n[Ox]) · [OL] = (m[Oj(V )]− n[Oj(x)]) · [OL] = mdeg(j(V ))[Op]

for any rational point p ∈ Pr. As this equality also holds in the group τi(Pr)/τi−1(Pr) associated to
the topological filtration on G(Pr), we see that τi(X)/τi−1(X) 6= 0 if 0 ≤ i ≤ dim(X) as well. �

Lemma 4.2.2. Let f : X → Y be a morphism between projective varieties X and Y . If the kernel
of the pushforward f∗ : G(X)→ G(Y ) is torsion, then f is finite.

Proof. Suppose otherwise that there is some positive dimensional integral subscheme V ⊂ X with
f(V ) = y a closed point of Y . Let x be any closed point of V . Then f∗[OV ] = n[Oy] and
f∗([Ox]) = m[Oy] where n = (f |V )∗([OV ]) = χ(OV )/deg(k(y)/k) is the pushforward, along the
map f |V : V → y, of [OV ] ∈ G(V ) and m = deg(k(x)/k(y)) 6= 0. This implies, in particular, that

f∗(m[OV ]− n[Ox]) = mn[Oy]−mn[Oy] = 0

but, m[OV ]−n[Ox] is a nonzero and not torsion element of τi(X) ⊂ G(X) by Lemma 4.2.1 (2). �

Lemma 4.2.3. Let f : X → Y be a morphism between projective varieties X and Y . Suppose that
the pushforward f∗ : G(X)→ G(Y ) is a surjection. Then the following statements hold:

(1) f is a surjection
(2) if f is moreover finite, then f is birational.

Proof. Let i : V → Y be the inclusion of an open dense subscheme and let j : U = f−1(V )→ X be
the corresponding inclusion of the preimage. The diagram on the left of (no.20) below is cartesian.
The diagram on the right of (no.20) below commutes by applying flat base change [Har77, Chapter
3, Proposition 9.3] to the diagram on the left.

(no.20)

U X G(X) G(U)

V Y G(Y ) G(V )

f |U f

j∗

f∗ (f |U )∗

i∗

The horizontal arrows in the right square of (no.20) are surjective because of localization. Since f∗
is a surjection by assumption, we get that (f |U )∗ is a surjection as well. In particular, this implies
that f is surjective (if f were not surjective, then setting V = Y \f(X) gives U = f−1(Y \f(X)) = ∅
and G(∅) = 0 whereas G(Y \ f(X)) 6= 0) which proves (1).
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To prove (2), choose a nonempty open V ⊂ Y with preimage U = f−1(V ) flat over V ; such a
V exists as a consequence of generic flatness, see [Sta19, Proposition 052A]. Since f is finite, and
therefore also f |U is finite, we can apply Grauert’s theorem [Har77, Chapter 3, Corollary 12.9] to
conclude that (f |U )∗OU is a locally free sheaf on V of rank deg(f). We’re going to show that
rk(f∗OX) = 1 which will complete the proof since rk(f∗OX) = rk((f |U )∗OU ).

Taking limits over the diagram on the right of (no.20) for all nonempty open subschemes V ⊂ Y ,
we get the commuting square

(no.21)

G(X) lim−→f−1(V )
G(f−1(V )) G(ηX) = Z

G(Y ) lim−→V
G(V ) G(ηY ) = Z

f∗

where ηX and ηY are the generic points of X and Y respectively. The horizontal arrows of (no.21)
are surjective by localization. Since f∗ is also surjective, the right vertical arrow of (no.21) is
an isomorphism. Identifying the horizontal arrows of (no.21) with the morphisms assigning to a
coherent sheaf its rank, it follows from going around the diagram that rk(f∗OX) = 1. �

We turn our attention to smooth and projective varieties for the proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. Our assumptions and Lemma 4.2.2 imply that f is finite. Our assumptions
and Lemma 4.2.3 show that f is birational. By Zariski’s Main Theorem [Liu06, Chapter 4, Corollary
4.6], we conclude that f is an isomorphism. �

We conclude with an application showing that naively A1-G-homotopy equivalent smooth and
projective varieties are isomorphic.

Corollary 4.2.4. Assume that X and Y are A1-G-homotopy equivalent smooth and projective
varieties. Then X and Y are isomorphic.

Proof. Apply Theorem 4.0.3 and Corollary 3.2.3. �

Example 4.2.5. The lowest dimensional nonexample of Theorem 4.0.3 is the same as the lowest
dimensional nonexample to Theorem 4.0.1 contained in Example 4.1.7: if C is a smooth conic over
Q without Q-rational points, then G(C) = Z⊕Z so that G(C) and G(P1) are abstractly isomorphic
but, there are no morphisms f : P1 → C.
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