
FUNCTORALITY OF THE GAMMA FILTRATION AND COMPUTATIONS

FOR SOME TWISTED FLAG VARIETIES

EOIN MACKALL

Abstract. We introduce techniques for uniformly studying the gamma filtration of projective
homogeneous varieties. These techniques are utilized in some cases of inner-twisted flag varieties
(of type A) to show that functorality known for the Chow rings of these varieties also extends to
the associated graded rings for the gamma filtrations of the same varieties. As an application, we
show that the associated graded groups for the gamma filtration of these varieties are torsion free
in low homological degrees.

1. introduction

In the past, the γ-filtration, along with the coniveau – or topological, or Chow – filtration,
of the Grothendieck ring of a projective homogeneous variety X had been studied in order to
gain information on the, often more elusive, Chow groups of X. For example, these filtrations
facilitated the first calculation of torsion in the Chow groups of a projective quadric [Kar90] and
the first computation of torsion in the Chow group of codimension 2 cycles of a Severi-Brauer variety
[Kar95b]. In return, knowledge about the Chow groups of these varieties often led to information
about these varieties, or related objects, including the construction of fields of u-invariant 9 [Izh01]
or showing generic central simple algebras of prime exponent were indecomposable [Kar95b].

More recently, the γ-filtration has been used to estimate the size of torsion in the Chow groups
of higher codimension for Severi-Brauer varieties [Bae15] and to estimate torsion in the Chow
groups of codimension 2 cycles and codimension 3 cycles for many other projective homogeneous
varieties [GZ14]. The γ-filtration has also recently been shown to have connections to the theory
of cohomological invariants [MNZ15] due to the relations between the γ-filtration and the Chow
group of codimension 2 cycles, and the Chow group of codimension 2 cycles for generic complete
flag varieties and cohomological invariants of degree 3.

Very recently, Karpenko conjectured that the γ-filtration should completely compute the Chow
ring for the class of generically split generic twisted flag varieties. More precisely, the Chow ring
of such a variety X is generated by Chern classes [Kar18c]. This means that the γ-filtration and
coniveau filtration for this X coincide and Karpenko’s conjecture is that the canonical epimorphism
from the Chow ring of X to the associated graded ring for the coniveau filtration of X is an
isomorphism. It’s now known that this conjecture is false in general [Kar19] but, it has been
proved in a number of cases [Kar17b, Kar18b, Kar18a, KM19] and is still open in many more.

This paper is the result of studying the associated graded ring for the γ-filtration of an arbitrary
Severi-Brauer variety (it is still open whether or not Karpenko’s conjecture holds in this case; see
[KM19] for partial results in this direction). We prove two main theorems in this regard: Theorem
4.11 and Theorem 5.1. The first of these theorems extends functorality that is known to hold for the
Chow ring (and to the associated graded ring for the coniveau filtration) of a Severi-Brauer variety
to functorality for the associated graded ring for the γ-filtration. The second of these theorems is
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a direct computation of the group summands of the associated graded ring for the γ-filtration in
low homological degrees; in particular, these summands are torsion free. Throughout this paper
we also show how to extend these theorems to other (generically split) inner twisted flag varieties
of type A.

It seems that, although all of our results are stated and worked out only in the case of Severi-
Brauer and related varieties, the ideas contained here should extend to other classes of projective
homogeneous varieties. For this reason we’re going to spend some time explaining the aspects that
should generalize to other settings.

The first aspect of this paper that should be explained is the use of τ -functorial replacements
for a smooth variety X (Definition 4.1). Essentially, a τ -functorial replacement for X is a smooth
variety Y that has the two properties: the associated graded rings, grγK(X) and grγK(Y ), for
the γ-filtrations of X and Y are isomorphic; the associated graded rings for the γ-filtration and
coniveau filtration, grγK(Y ) and grτG(Y ), of Y are canonically isomorphic. In particular, the ring
grγK(Y ) computes the ring grγK(X) and grγK(Y ) has all of the functorality of grτG(Y ).

To the author’s knowledge, the first time τ -functorial replacements appeared in the literature is
in [Kar98] where they were used to compute the torsion subgroup of the Chow group of codimension
2 cycles of a Severi-Brauer variety in some generic cases. Here we use τ -functorial replacements
to prove functorality results for the γ-filtration and its associated graded ring. As an example, see
Corollary 4.12, we show that the associated graded ring for the γ-filtration of a Severi-Brauer variety
X is a sum of copies of the associated graded ring for the γ-filtration of the minimal Severi-Brauer
variety X ′ Brauer-equivalent to X.

Similarly, the general philosophy working with τ -functorial replacements should be: if one can
obtain a decomposition of the motive of X depending only on some canonically associated sub-
varieties of, and projective bundles over, X and, if X has a τ -functorial replacement Y that also
has this decomposition, then the ring grγK(X) should decompose similarly. The reason for this is
because the coniveau filtration already has most of the functorality one needs to make this claim,
e.g. it has pushforwards. So, if Y is a τ -functorial replacement for X and if f : Z → Y is a proper
morphism then it makes sense to talk about the pushforward f∗ : grγK(Z)→ grγK(Y ) defined as
the uniquely determined arrow making the following square commutative.

grγK(Z) grτG(Z)

grγK(Y ) grτG(Y )

f∗ f∗

And this should be sufficient to make the claim for grγK(Y ) = grγK(X).
The second aspect of this paper that should be explained is the method we use for calculating the

γ-filtration of a Severi-Brauer variety. For any Severi-Brauer variety X associated to a p-primary
indexed central simple algebra A, one can find a finite set of λ-ring generators for the Grothendieck
ring K(X). The finite set that we use is a collection of sheaves, or vector bundles, that comes from
the data contained in the reduced behavior of A (Definition 5.2 and Lemma 5.3).

It follows almost immediately that any set of λ-ring generators for K(X), with X a smooth
variety, also determines generators for the γ-filtration of X: one can take as generators for γi those
K-theoretic Chern classes of the λ-ring generating set (below we take the negatives of the duals
of this set, since this is more convenient for computations). A possibly näıve, but still interesting,
question would be whether this idea extends to other projective homogeneous varieties: is there
a canonical set of sheaves, or vector bundles, associated to a discrete invariant of a projective
homogeneous variety X that generates K(X) as a λ-ring? As one could just take a basis for K(X)
for their λ-ring generating set, a better but, more difficult, question is: is there a canonical set SX
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of sheaves, or vector bundles, associated to a discrete invariant of a projective homogeneous variety
X such that SX generates K(X) as a λ-ring and SX is minimal among such sets?

Now to an overview of this paper. Section 2 and section 3 serves as background to section 4 and
section 5. In Section 2 we describe a nice presentation for the Grothendieck ring of a Severi-Brauer
variety. Section 3 gives the definition of the γ and coniveau filtrations; we take the properties of
these filtrations as known and refer to references when the reader needs them. Section 4 contains
the main bulk of conceptual work. In this section we introduce τ -functorial replacements and prove
that they exist in a number of cases. Section 5 is, by contrast, mainly computational. We compute
here the associated graded ring for the γ-filtration of a Severi-Brauer variety through entirely ele-
mentary means.

Notation and Conventions. We fix a field k throughout. All of our objects are defined over k
unless stated otherwise.

If X is a variety considered over a field F , not necessarily equal to k, we write X for X over an
algebraic closure of F .

If p is a prime, then vp is the p-adic valuation.

2. Grothendieck groups of Severi-Brauer varieties

Throughout this section we fix a central simple algebra A of degree n and let

X = SB(A) ⊂ Gr(n,A)

be the Severi-Brauer variety of A of dimension n−1 considered as a subvariety of the Grassmannian
of n-planes in A. For any field F over k, the F -points of SB(A) are exactly the minimal right ideals
of AF . We write ζX for the tautological sheaf on X. By definition, ζX is the pullback of the
universal subsheaf on Gr(n,A) so, for any k-algebra R and any R-point x of X corresponding to a
right ideal I ⊂ A⊗k R, the sheaf x∗ζX can be canonically identified with I when considered as an
R-module; in particular, ζX is a right module over the constant sheaf A.

By K(X) we mean the Grothendieck ring of locally free sheaves on X. By G(X) we mean the
Grothendieck ring of coherent sheaves on X. The two groups are canonically isomorphic via the
morphism sending the class of a locally free sheaf in K(X) to the class of itself in G(X). These
groups have been computed in this case:

Theorem 2.1 ([Qui73, §8, Theorem 4.1]). The homomorphism of K-groups

deg(A)−1⊕
i=0

K(A⊗i)→ K(X)

sending the class of a left A⊗i-module M to ζ⊗iX ⊗A⊗i M is an isomorphism.

In particular, K(X) is a free Z-module of rank deg(A) that is additively generated by the classes

ζX(i) := ζ⊗iX ⊗A⊗i Mi

as i varies between 0 ≤ i < deg(A); here we denote by Mi a simple A⊗i-module. For any splitting
field F of A, the variety XF is isomorphic with the projective space PnF , the extension of scalars
map K(X)→ K(XF ) is injective, and identifies K(X) as a subring of K(XF ). More precisely, we
have:

Theorem 2.2. In the setting above, let ξ denote the class of OXF
(−1) in K(XF ). There is a ring

isomorphism

Z[x]/(1− x)n
∼−→ K(XF )

sending x to ξ.
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Under this isomorphism K(X) identifies with the subring of Z[x]/(1−x)n generated by ind(A⊗i)xi.

Proof. The isomorphism is well-known, see [Man69]. Finally, we use that ζX⊗kF has class deg(A)ξ
in K(XF ) to get the remaining claim by computing the ranks of the ζX(i). �

We also include here the following formulas. The first is just the binomial theorem (before and
after a change of coordinates). The second applies the previous one.

Lemma 2.3. In any commutative ring there are equalities, for any integers n ≥ i ≥ 0,

(1− x)n =

n∑
i=0

(−1)i
(
n

i

)
xi and xn =

n∑
i=0

(−1)i
(
n

i

)
(1− x)i(1)

xn − 1 =

n∑
i=1

(−1)i
(
n

i

)
(1− x)i.(2)

�

3. the gamma and coniveau filtrations

In this section we recall some results on the γ-filtration of K(X) and on the coniveau (or topo-
logical or Chow) filtration on G(X) for an arbitrary smooth variety X.

For the first, recall there are γ-operations defined on K(X) as follows. The ith-exterior power
operation induces a well-defined map λi : K(X)→ K(X) which is uniquely determined by sending
the class of a locally free sheaf F to the class of ∧iF . The ith γ operation γi : K(X) → K(X) is
defined by sending an element x to the coefficient of ti in the formal series

γt(x) =
∑
j≥0

λj(x)

(
t

1− t

)j
.

The γ-filtration on K(X) is defined as γ0 = K(X), γ1 = ker(rk) where rk : K(X)→ Z is the map
sending the class of a locally free sheaf F to its rank, and γi for i ≥ 2 is generated by monomials
γi1(x1) · · · γir(xr) for any r ≥ 0, i1 + · · ·+ ir ≥ i and x1, ..., xr elements of γ1. We use the notation

griγK(X) := γi/i+1 := γi/γi+1 and grγK(X) :=
⊕
i≥0

griγK(X)

for the associated graded pieces of this filtration and for the associated graded ring of this filtration
respectively. When we need to be precise about which variety the γ-filtration is being considered
for, we will specify by writing γi(X) to mean the ith piece of the γ-filtration for the variety X. For
further properties of these operations we refer to the references [Man69, MR071].

For the second, recall the coniveau filtration on G(X) is defined by setting τ i, for any i ≥ 0, to
be the ideal

τ i :=
∑

x∈X(j)

ker (G(X)→ G(X \ x))

where j ≥ i, X(j) denotes the set of codimension j points of X, and the arrows are flat pullbacks
with respect to the respective inclusions X \ x ⊂ X for varying points x. We use the notation

griτG(X) := τ i/i+1 := τ i/τ i+1 and grτG(X) :=
⊕
i≥0

griτG(X)

for the associated graded pieces of this filtration and for the associated graded ring of this filtration
respectively. Sometimes when more precision is needed, we include the variety in our notation for
the coniveau filtration, i.e. τ i(X) for the ith piece of the coniveau filtration of X.

The two filtrations are related:
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Theorem 3.1. Identify K(X) with G(X) under the canonical isomorphism. Then, for any i ≥ 0
we have γi ⊂ τ i. Hence the isomorphism K(X) → G(X) induces a (graded) filtration-comparison
morphism grγK(X) → grτG(X). Moreover, if the filtration-comparison map is surjective, or in-

jective, then the two filtrations are equal, i.e. γi = τ i for all i ≥ 0 (in particular, if either of these
conditions hold then the filtration-comparison map is bijective).

Proof. For the first claim, see [Man69]. The second claim about surjectivity implying bijectivity
originally appears in [Kar98] and is updated in [KM18, Proposition 3.3] where the claim about
injectivity implying bijectivity also appears. �

4. reductions

The main purpose of this section is to provide a way to reduce computations of the associated
graded ring for the γ-filtration of a Severi-Brauer variety X to the case X = SB(A) for a p-primary
division algebra A. In this regard we utilize heavily the motivic techniques of Karpenko (e.g.
[Kar95a, Corollary 1.3.2],[Kar17a, Lemma 3.5]). The reason we can use these results is due to the
observation that for any Severi-Brauer variety X there is a Severi-Brauer variety Y so that the
γ-filtrations of X and Y are the same and, simultaneously, the γ-filtration and coniveau filtration
for this Y are isomorphic as well. This allows us to prove results about X by first replacing it with
a functorially-nicer Y and then reducing to previously known results. This observation seems nice
enough to name it.

Definition 4.1. Let X be an arbitrary smooth variety. We say that a smooth F -variety Y , with F
being a field possibly different from k, is a τ -functorial replacement of X if the following conditions
hold:

(1) there is an isomorphism of groups

coker
(
K(X)→ K(X)

)
= coker

(
K(Y )→ K(Y )

)
where the arrows are pullbacks along the projections,

(2) there is an isomorphism of graded rings grγK(X) = grγK(Y ),
(3) the filtration-comparison map grγK(Y )→ grτG(Y ) is an isomorphism.

Remark 4.2. In the cases where we are concerned, condition (1) of Definition 4.1 will always imply
condition (2) of Definition 4.1. Most likely, condition (2) also implies condition (1) in these cases.

Note also that it’s important to allow the variation of the field of definition of Y . Often when
these τ -functorial replacements are known to exist, the field F is a much larger field than k.

We’re going to rephrase Definition 4.1 so that, when X is a Severi-Brauer variety, a τ -functorial
replacement can be constructed using only data that one can read off from the associated central
simple algebra. To do this we introduce the following definition which is a small generalization
from one already in common use. From now on, we let A be an arbitrary central simple algebra
and we set X = SB(A).

Definition 4.3. Suppose A has a decomposition A = Mr(k) ⊗
(⊗

p primeAp

)
with each Ap a

division algebra of p-primary power index. Then we define the behavior of A to be the sequence

Beh(A) =
(

ind(A), ind(A⊗2), . . . , ind(A⊗exp(A))
)
.

We define the p-behavior, where p is a specified prime, to be the sequence

Beh(p,A) =
(

ind(Ap), ind(A⊗pp ), . . . , ind(A
⊗exp(Ap)
p )

)
.
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Finally, we define the reduced p-behavior of A to be the sequence

rBeh(p,A) =
(
vpind(Ap), vpind(A⊗pp ), . . . , vpind(A

⊗exp(Ap)
p )

)
.

If A is a p-primary algebra then, in order to relieve some notational burden, we will call the
reduced p-behavior simply the reduced behavior of A, and we will write rBeh(A) instead of rB(p,A).

Remark 4.4. The reduced behavior is a strictly descending sequence ending in 0. Conversely, for
every prime p and for every strictly descending sequence ending in 0 there is a p-primary algebra
with reduced behavior the given sequence, see [Kar98, Lemma 3.10]. Note that it’s possible to
reconstruct the behavior of A from the p-behavior (or the reduced p-behavior) as p ranges over all
primes.

An equivalent definition for a τ -functorial replacement Y of X, when Y is also a Severi-Brauer
variety, is then:

Lemma 4.5. A Severi-Brauer variety Y = SB(B) associated to a central simple algebra B is a
τ -functorial replacement for X if, and only if, the following conditions hold:

(1) deg(A) = deg(B),
(2) for every prime p, the reduced p-behaviors of A,B are the same rBeh(p,A) = rBeh(p,B),
(3) the filtration-comparison map grγK(Y )→ grτG(Y ) is an isomorphism.

Proof. For the forward direction, it suffices to observe that conditions (1) and (2) of the lemma
imply condition (1) Definition 4.1 by Theorem 2.2. For condition (2) of Definition 4.1, this is
observed in [IK99, Theorem 1.1 and Corollary 1.2].

For the reverse direction, we start by assuming Y = SB(B) is a τ -functorial replacement for X.
Then

deg(A) = dimQ(grγK(X)⊗Q) = dimQ(grγK(Y )⊗Q) = deg(B)

proves condition (1) of the lemma statement. To see that condition (2) of the lemma statement
holds, one can use the fact that tensoring the cokernel with Z(p) gives a decomposition

coker
(
K(X)→ K(X)

)
⊗ Z(p) = (Z/pn0Z)⊕r0 ⊕ · · · ⊕ (Z/pnm−1Z)⊕rm−1

for integers n0 > · · · > nm−1 > 0. Then rBeh(p,A) = (n0, ..., nm−1, 0) and, as the same is true for
Y and B, we find rBeh(p,A) = rBeh(p,B) for every prime p. �

The remainder of this section is devoted to proving that, given an arbitrary Severi-Brauer variety
like X, there exists a τ -functorial replacement Y of X such that Y is also a Severi-Brauer variety.
Our starting point is that it’s already known, from [Kar98, Theorem 3.7 and Lemma 3.10], that
τ -functorial replacements exist for the Severi-Brauer varieties of p-primary division algebras for any
prime p.

Lemma 4.6. Fix a prime p and suppose that A is a division algebra with ind(A) = pn, for some
n ≥ 0. Then there exists a τ -functorial replacement Y for X = SB(A) such that Y is also a
Severi-Brauer variety.

Proof. This is a restatement of [Kar98, Theorem 3.7 and Lemma 3.10]. We recall for later use how
one constructs such a replacement. Let B be a division algebra over a field F with

ind(B) = exp(B) = ind(A).

Let rBeh(A) = (n0, ..., nm) be the reduced behavior of A. Set Zi = SB(pni , B⊗p
i
) to be the

generalized Severi-Brauer variety of right ideals of B⊗p
i

of dimension ri = deg(B⊗p
i
)pni inside of

Gr(ri, B
⊗pi). Let Z = Z1 × · · · × Zm. Then the τ -functorial replacement constructed in [Kar98] is

exactly Y = SB(BF (Z)). �
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To extend this lemma to arbitrary Severi-Brauer varieties takes some effort. We first show that, if
a Severi-Brauer variety X has a τ -functorial replacement Y that is also a Severi-Brauer variety, then
every Severi-Brauer variety X ′ Brauer equivalent to X also has a τ -functorial replacement Y ′ that
is a Severi-Brauer variety. Together with Lemma 4.6, this proves that τ -functorial replacements
exist for the Severi-Brauer variety of any central simple algebra that has p-primary index for some
prime p. To extend this result to Severi-Brauer varieties of arbitrary central simple algebras A with
no conditions on the index, one replaces the primary division algebra factors of A (in a particular
way) and then takes a matrix ring over the tensor product of these replacements. That the Severi-
Brauer variety of this algebra is a τ -functorial replacement of the Severi-Brauer variety of our
original algebra A is proved in Theorem 4.11 below.

We start with:

Lemma 4.7. Suppose A is an arbitrary central simple algebra, with X = SB(A). Let DA be the
underlying division algebra of A and set X ′ = SB(DA). Then the following statements hold.

(1) Suppose there exists a Severi-Brauer variety Y = SB(B) that is a τ -functorial replacement
for X; if DB is the underlying division algebra of B, then Y ′ = SB(DB) is a τ -functorial
replacement for X ′.

(2) Suppose there exists a Severi-Brauer variety Y ′ = SB(DB) that is a τ -functorial replacement
for X ′; if B = Mr(DB) for some r with deg(A) = deg(B), then Y = SB(B) is a τ -functorial
replacement for X.

Proof. In both statements (1) and (2), it’s clear conditions (1) and (2) of Lemma 4.5 hold for
the algebra associated to the Severi-Brauer variety that we are trying to check is a τ -functorial
replacement. So, we only need to check condition (3).

Note that the projections Y × Y ′ → Y ′ and Y × Y ′ → Y are both projective bundles over
their targets. Thus the following diagram commutes where the vertical arrows are the filtration-
comparison morphisms (or sums of these morphisms) and the horizontal equalities are from the
projective bundle formulas for both grγK and grτG.⊕

grτG(Y ) grτG(Y × Y ′)
⊕

grτG(Y ′)

⊕
grγK(Y ) grγK(Y × Y ′)

⊕
grγK(Y ′)

It follows if the left, or the right, vertical arrow is a surjection then the middle vertical arrow is
a surjection and therefore, by Theorem 3.1, an isomorphism. If the middle vertical arrow of this
diagram is an isomorphism, then the outer two vertical arrows are isomorphisms as well. Hence
the left vertical arrow is an isomorphism if and only if the right vertical arrow is an isomorphism,
as claimed. �

As a consequence of the above proof we get:

Proposition 4.8. Suppose A has p-primary index. Then there exists a Severi-Brauer variety Y
that is a τ -functorial replacement for X = SB(A). �

To extend Proposition 4.8 to an arbitrary central simple algebra (with no requirements on the
index) we’ll need the following description of the p-torsion in grγK(X).

Lemma 4.9. Fix a prime p. Let F be a finite field extension of k with degree [F : k] not divisible
by p. Then the pullback along the projection K(X)→ K(XF ) induces an isomorphism

grγK(X)⊗ Z(p) → grγK(XF )⊗ Z(p).
7



Proof. Note that, by the projection formula, the pullback composed with the pushforward

K(X)⊗ Z(p) → K(XF )⊗ Z(p) → K(X)⊗ Z(p)

is an isomorphism. As these are morphisms between free Z(p)-modules of the same rank, the
composition in the other direction

K(XF )⊗ Z(p) → K(X)⊗ Z(p) → K(XF )⊗ Z(p)

is also an isomorphism. Thus the pullback itself K(X)⊗ Z(p) → K(XF )⊗ Z(p) is an isomorphism.
Consider the following commuting ladder with exact rows and vertical arrows induced by the

pullback along the projection XF → X.

0 γi+1(X)⊗ Z(p) γi(X)⊗ Z(p) γi/i+1(X)⊗ Z(p) 0

0 γi+1(XF )⊗ Z(p) γi(XF )⊗ Z(p) γi/i+1(XF )⊗ Z(p) 0

πi+1 πi πi/i+1

The right vertical arrow is a surjection since K(X) ⊗ Z(p) → K(XF ) ⊗ Z(p) is a surjection (cf.
[Mac18, Proof of Lemma 2.3]). By the snake lemma one gets short exact sequences

0→ ker(πi/i+1)→ coker(πi+1)→ coker(πi)→ 0.

Since for j ≥ dim(X) one has coker(πj) = 0, the claim follows. �

Remark 4.10. The above proof can be adapted to show that, for any morphism X → Y between
smooth varieties X and Y , if the pullback K(Y )→ K(X) is an isomorphism (resp. an isomorphism
after tensoring with a flat ring R) then the pullback grγK(Y )→ grγK(X) is an isomorphism (resp.
an isomorphism after tensoring with a flat ring R); cf. [KM18, Lemma 3.6].

Finally, we’ve arrived at the main result of this section.

Theorem 4.11. For an arbitrary central simple algebra A, there exists a Severi-Brauer variety Y
that is a τ -functorial replacement for X = SB(A).

Proof. Let A = Mr(k) ⊗
(⊗

p primeAp

)
be a decomposition with each Ap a p-primary division

algebra. We set Xp = SB(Ap) in the following.
Find a field F (e.g. F = Q works) such that, for each prime p, there exists division algebras Bp

over F with ind(Bp) = exp(Bp) = ind(Ap). Fix any particular choice of prime p and consider the
reduced p-behavior of A,

rBeh(p,A) = (n0, ..., nm).

Set Zip = SB(pni , B⊗p
i

p ) as in Lemma 4.6. We set Zp = Z1
p × · · · × Zmp to be the product of these

varieties. In a similar fashion we construct varieties Zq for all other primes q 6= p. Let

Z =
∏

p prime

Zp and Zp =
∏

q prime, q 6=p
Zq

be the given products. Finally, set B = Mr(F )⊗
(⊗

p primeBp

)
.

We claim Y = SB(BF (Z)) is a τ -functorial replacement for X. The proof proceeds in several
steps. The first step we take is to show that

(ts) (Bp ⊗F F (Zp))⊗F (Zp) F (Zp,F (Zp)) = Bp ⊗F F (Z)

is a τ -functorial replacement for Ap. But this is clear since, by index reduction [MPW96, equation
(0.3)] one has

ind(Bp,F (Zp)) = exp(Bp,F (Zp)) = ind(Ap)
8



and the left side of the equation (ts) is the algebra constructed exactly as in Lemma 4.6.
The next step we take is to show that condition (3) of Lemma 4.5 is satisfied by Y = SB(BF (Z)).

Since conditions (1) and (2) are clear for BF (Z) (applying again index reduction in the same way
as in Lemma 4.5), this will complete the proof of the theorem. To do this, we let Lp be a finite
field extension of F (Z) that splits Bq for all q 6= p and such that [Lp : F (Z)] is not divisible by p.
Then the following square is commuting

(D)

grγK(Y )⊗ Z(p) grγK(YLp)⊗ Z(p)

grτG(Y )⊗ Z(p) grτG(YLp)⊗ Z(p)

where the vertical arrows are filtration-comparison maps and the horizontal arrows are pullbacks
with respect to the projection YLp → Y . Since the top horizontal arrow of (D) is an isomorphism
by Lemma 4.9 and the right vertical arrow is an isomorphism, by the construction of YLp and by
the proof of Proposition 4.8, it follows that the left vertical arrow of (D) is an injection. Repeating
this argument for all primes p allows us to conclude that the morphism grγK(Y ) → grτG(Y ) is
an injection since it is after localizing at every maximal ideal of Z. But, the filtration-comparison
map has the nice property that injectivity implies surjectivity, see Theorem 3.1, which completes
the proof. �

As an application of the existence of τ -functorial replacements for an arbitrary Severi-Brauer
variety, let us show one way to extend known motivic results on Severi-Brauer varieties to statements
for the associated graded ring of the γ-filtration.

Corollary 4.12. Suppose A is an arbitrary central simple algebra and let DA be the underlying
division algebra of A. Write X = SB(A) and X ′ = SB(DA). Then there is an isomorphism

deg(A)/deg(DA)⊕
i=1

grγK(X ′)→ grγK(X).

Proof. Let Y = SB(B) be a τ -functorial replacement for X. Let Y ′ = SB(DB) where DB is the
underlying division algebra for B. Let r = deg(A)/deg(DA) = deg(B)/deg(DB). Then there is a
canonical chain of isomorphisms,

r⊕
i=1

grγK(X ′)
∼−→

r⊕
i=1

grγK(Y ′)
∼−→

r⊕
i=1

grτG(Y ′)
∼−→ G(Y )

∼←− grγK(Y )
∼←− grγK(X)

using the definition of τ -functorial replacements and [Kar95a, Corollary 1.3.2], that defines the
isomorphism of the Corollary. �

We end this section by making the following observation that generalizes the existence of a
τ -functorial replacement to some other generalized flag varieties.

Corollary 4.13. Let A be a central simple algebra with ind(A) = n. Let Vi1,...,ir(A) be the variety
of flags of ideals in A of reduced dimensions i1, ..., ir. If gcd(i1, ..., ir, n) = 1 then there exists a τ -
functorial replacement for Vi1,...,ir(A). Moreover, these τ -functorial replacements can be constructed
as twisted flag varieties of the same kind.

Proof. Let Y = Vi1,...,ir(A) and X = SB(A). Let X ′ be a Severi-Brauer variety that is a τ -functorial
replacement of X, using Theorem 4.11, and let B be the central simple algebra corresponding to
X ′. Let Y ′ = Vi1,...,ir(B). Note that one has Beh(A) = Beh(B). So, by the results of [Pan94], one
also has

coker
(
K(Y )→ K(Y )

)
= coker

(
K(Y ′)→ K(Y ′)

)
9



and grγK(Y ) = grγK(Y ′) for exactly the same reasons as when X is a Severi-Brauer. It remains
to show the γ-filtration and coniveau filtration for Y ′ are equal.

To finish the proof, we’re going to show grτG(Y ′) is generated by Chern classes. It follows from
this that the canonical map grγK(Y ′) → grτG(Y ′) is a surjection and therefore also an injection
by Theorem 3.1. By [PSZ08, Corollary 3.4] the projection X ′ × Y ′ → X ′ is a cellular fiber bundle
over X ′. It follows that

⊕
grτG(X ′) = grτG(X ′ × Y ′) is generated by Chern classes. Again by

[PSZ08, Corollary 3.4] the projection X ′ × Y ′ → Y ′ is a projective bundle, and it follows that
grτG(Y ′) ⊂

⊕
grτG(Y ′) = grτG(X ′ × Y ′) is also generated by Chern classes. �

5. describing the γ-filtration

The goal of this section is to prove our main result, Theorem 5.1, that computes some of the
graded groups associated to the γ-filtration in low homological degree for a Severi-Brauer variety
X = SB(A) associated to a central simple algebra A with p-primary index.

Theorem 5.1. Let A be a central simple algebra with ind(A) = pn and set X = SB(A). Then
there are equalities

grp
n−i
γ K(X) = pn(ξ − 1)p

n−iZ
for all 1 ≤ i ≤ p− 1.

In the above we’re identifying K(X) with its image in K(XF ) for some splitting field F of A and
we are setting ξ to be the class of OXF

(−1) in K(XF ) as in Theorem 2.2.

Using results of the previous section, this computation immediately generalizes to an arbitrary
central simple algebra and to more general twisted flag varieties.

Our proof of the main theorem works in the following way. We first consider the filtration
on K(X) generated by K-theoretic Chern classes in ζX(1) and show that, inside of K(XF ), this
filtration is especially simple. Specifically, in low degrees this filtration is spanned by polynomials
pn(ξ − 1)i for large i. Then we write out a general generator of the γ-filtration on X in the same
degree, considered also inside of K(XF ), and show that pn divides the coefficient of this general
element. It follows that the γ-filtration is actually spanned, in these degrees, by K-theoretic Chern
classes in ζX(1) and this allows us to conclude. The proof itself is long but entirely elementary.

Before proving this theorem, however, we describe a particular generating set for the γ-filtration
for a Severi-Brauer variety X = SB(A) when A is a central simple algebra with p-primary index.
This generating set appears in the literature already [Kar98, Bae15] but, the justification for why it
exists is conceptually clearer using the arguments given here. We’re also going to take this chance
to uniformize the notation that will be used throughout the remainder of this text. Recall then the
following definition [KM19, Definition A.1].

Definition 5.2. Let A be a central simple algebra with ind(A) = pn and let X = SB(A). Let

SX = {i : vpind(A⊗p
i
) < vpind(A⊗p

i−1
)− 1}

be the given set of natural numbers. We call the cardinality #SX the level of A or the level of X.

In other words, the level of A is the number of places where the reduced behavior decreases by
more than one from one position to the next. The relevance of the level is contained in the following
lemma.

Lemma 5.3. [KM19, Lemma A.6] The ring K(X) is generated, as a λ-ring, by the classes of the
sheaves of the set {ζX(pi)}i where i is an index for the set {0} ∪ SX .

In particular, the above lemma implies the following lemma about a small generating set for the
γ-filtration on K(X).

10



Lemma 5.4. Let A be a central simple algebra with p-primary index for a prime p. Set X = SB(A)
to be the associated Severi-Brauer variety. Then the ith piece of the γ-filtration, γi ⊂ K(X), is
generated additively by products

γj1(x1 − rk(x1)) · · · γjr(xr − rk(xr))

where j1 + · · ·+ jr ≥ i and x1, ..., xr are elements of {ζX(pi)}i where i indexes the set SX ∪ {0}.

Proof. Note that the images of these products generate the graded group γi/γi+1 since these are the
images of K-theoretic Chern classes of the negatives of the duals of the sheaves ζX(pi). The claim

can then be obtained by descending induction since for i = dim(X) one has γi−1/i = γi−1. �

Using the description of Theorem 2.2, the products appearing in the statement of Lemma 5.4
can be computed like so.

Lemma 5.5. Let A be a central simple algebra with p-primary index for some prime p. Assume A
has reduced behavior rBeh(A) = (n0, ..., nm). Fix a splitting field F of A and identify K(X) with
its image in K(XF ). Let ξ be the class of OXF

(−1).
Then

γi(ζX(pj)− pnj ) =

(
pnj

i

)
(ξp

j − 1)i.

Proof. This is computed in [Kar98]. It’s done by observing

γt(p
njξp

j − pnj ) = γt(p
nj (ξp

j − 1)) = γt(ξ
pj − 1)p

nj
= (1 + (ξp

j − 1)t)p
nj

which gives the claim. �

We’re almost in position to prove Theorem 5.1. The last ingredient we need for the proof is
contained in the next definition and the following lemma.

Definition 5.6. Let X = SB(A) be the Severi-Brauer variety of a central simple algebra A with
ind(A) = pn for some prime p. Let ηi(X) be the ideal of K(X) generated by monomials

γj1(ζX(1)− pn) · · · γjr(ζX(1)− pn)

with j1 + · · ·+ jr ≥ i. When it’s clear from context, we simply write ηi for ηi(X).

Lemma 5.7. Let X = SB(A) be the Severi-Brauer variety of a central division algebra A with
ind(A) = pn. Let F be a splitting field for X and make the identifications of Theorem 2.2. Then
ηi defines a descending ring filtration on K(X) and, for every i ≥ 0, one has

ηi =
⊕
j≥i

pn−vp(j)(ξ − 1)jZ.

Proof. The claim about being a filtration is clear. For the equality, we do this by showing both
sides include in the other. The reverse direction

ηi ⊃
⊕
j≥i

pn−vp(j)(ξ − 1)jZ

is clear since, for all 0 ≤ i ≤ pn one has

γ1(ζX(1)− pn) = pn(ξ − 1) and γi(ζX(1)− pn) =

(
pn

i

)
(ξ − 1)i,

by Lemma 5.5, and gcd(pin,
(
pn

i

)
) = pn−vp(i) by [Kar98, Lemma 3.5].

For the inclusion
ηi ⊂

⊕
j≥i

pn−vp(j)(ξ − 1)jZ

11



we note that pn−vp(j) divides
(
pn

j1

)
· · ·
(
pn

jr

)
whenever j1 + · · · + jr = j ≤ pn. Indeed, let v =

mins{vp(js)} and suppose, without loss of generality, that v = vp(j1). Then

vp

((
pn

j1

)
· · ·
(
pn

jr

))
=n− v +

r∑
s=2

(n− vp(js))

≥n− vp(j)

This inequality, together with the definition of ηi and Lemma 5.5, gives the result. �

Proof of Theorem 5.1. It suffices by Corollary 4.12 to assume A is a division algebra. Our proof
works by showing pn divides the coefficient of every element of γp

n−p+1 ⊃ γpn−i when each of these
elements is written as polynomial in (1− ξ). Note since there are inclusions

γp
n−p+1(X) ⊂ τpn−p+1(X) ⊂ τpn−p+1(XF ) = (1− ξ)pn−p+1K(XF ),

we can write every element y of γp
n−p+1 as a sum

y =

pn−1∑
j=pn−p+1

aj(1− ξ)j

for some integers aj . After we show pn divides each of these aj , it follows that we have inclusions

ηp
n−p+1 ⊂ γpn−p+1 ⊂ ηpn−p+1

and this will end the proof.
Suppose then

y = γj1(x1 − rk(x1)) · · · γjr(xr − rk(xr))

is an arbitrary monomial generating γp
n−p+1 like those described in Lemma 5.4. We work in two

cases: each of x1, ..., xk is equal to ζX(1) for some 1 ≤ k ≤ r or ζX(1) does not appear among the
x1, ..., xr at all.

Assuming we’re in the former case, let us make one more reduction. We’re trying to give a lower
bound the p-adic valuation of the coefficient in an expansion of y. We’re also assuming each of
x1, ..., xk are equal to ζX(1) and, since

n− vp(r) = vp

((
pn

r

))
≤ vp

((
pn

j1

)
· · ·
(
pn

jk

))
when r = j1 + · · ·+ jk (see the end of the proof of Lemma 5.7), we can therefore assume k = 1.

With these assumptions we can expand y as follows

y =

(
pn

j1

)
(ξ − 1)j1

(
pn−t2

j2

)
(ξp

s2 − 1)j2 · · ·
(
pn−tr

jr

)
(ξp

sr − 1)jr

=

(
pn

j1

)(
pn−t2

j2

)
· · ·
(
pn−tr

jr

)
(ξ − 1)j1(ξp

s2 − 1)j2 · · · (ξpsr − 1)jr

where here we are writing xk = ζX(psk) for some integers s2, ..., sr ≥ 1 and pn−tk = ind(A⊗p
sk ).

Now by Lemma 2.3, equation 2, there is an expansion, for each integer k satisfying 2 ≤ k ≤ r,

ξp
sk − 1 =

psk∑
i=1

(−1)i
(
psk

i

)
(1− x)i.

We set xlow(k) =
∑p−1

i=1 (−1)i
(
psk
i

)
(1 − x)i to be sum containing the small degree summands of

this latter sum and xhigh(k) =
∑psk

i=p(−1)i
(
psk
i

)
(1 − x)i to be the sum containing the high degree
12



summands. We still have an equality

ξp
sk − 1 = xlow(k) + xhigh(k)

for every 2 ≤ k ≤ r but it’s useful to group the terms in this way since p divides each xlow(k) but
one doesn’t necessarily have that p divides any xhigh(k).

Rewriting y in terms of the xlow(k)’s and xhigh(k)’s gives

y =

(
pn

j1

)(
pn−t2

j2

)
· · ·
(
pn−tr

jr

)
(ξ − 1)j1(xlow(2) + xhigh(2))j2 · · · (xlow(r) + xhigh(r))jr .

By applying the binomial theorem and expanding we get

r∏
k=2

(xlow(k) + xhigh(k))jk =
r∏

k=2

(
jk∑
l=0

(
jk
l

)
xlow(k)lxhigh(k)jk−l

)

=

(
xlow(2)jk · · ·xlow(r)jr +

r∑
k=2

xhigh(k)qk

)
where qk is a polynomial in the terms xlow(2), . . . , xlow(r), xhigh(2), . . . , xhigh(r). If xhigh(k) 6= 0
then the lowest degree in (1 − ξ) of xhigh(k) is p, while the lowest degree of any xlow(k) is 1. In
particular, the lowest degree in (1− ξ) of any xhigh(k)qk is j2 + · · ·+ (jk − 1 + p) + · · ·+ jr. After
multiplying by (ξ − 1)j1 it follows

(ξ − 1)j1
r∏

k=2

(xlow(k) + xhigh(k))jk = (ξ − 1)j1xlow(2)jk · · ·xlow(r)jr

because of

j1 + j2 + · · ·+ (jk − 1 + p) + · · ·+ jr ≥ pn − p+ 1− 1 + p = pn

and Theorem 2.2.
Thus we find

y =

(
pn

j1

)(
pn−t2

j2

)
· · ·
(
pn−tr

jr

)
(ξ − 1)j1xlow(2)j2 · · ·xlow(r)jr

=

(
pn

j1

)(
pn−t2

j2

)
· · ·
(
pn−tr

jr

)
pj2+···+jr(ξ − 1)j1

(
xlow(2)

p

)j2
· · ·
(
xlow(r)

p

)jr
since each xlow(k) is divisible by p.

Now set α =
(
pn

j1

)(
pn−t2

j2

)
· · ·
(
pn−tr

jr

)
pj2+···+jr . We have

vp(α) =n− vp(j1) +

r∑
k=2

(n− tk − vp(jk)) + j2 + · · ·+ jr

≥n− vp(j1) + j2 + · · ·+ jr

We finish by showing n−vp(j1)+j2+ · · ·+jr ≥ n for all possible j1, ..., jr or, equivalently, assuming
j1 + · · ·+ jr = pn − i for some i with 0 < i < p we finish by showing

pn − i ≥ j1 + vp(j1).

Assuming i is largest possible we can also show pn−p+1 ≥ j1+vp(j1). We can assume vp(j1) > 0 as

otherwise pn divides
(
pn

j1

)
. Hence we can assume j1 = a1p

n−1+ · · ·+an−rpr with 0 ≤ a1, ..., an−r < p

and some minimal r ≥ 1. This inequality becomes

pn − p+ 1 ≥ a1pn−1 + · · ·+ an−rp
r + r.
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We make one last approximation, and assume all a1, ..., an−r are equal (p − 1), as this is the
largest they can be. We’re left checking

pn − p+ 1 ≥ a1pn−1 + · · ·+ an−rp
r + r = pn − pr + r.

Rearranging, we check
pr − p ≥ r − 1

which is clear if r = 1 and is the same as
pr − p
r − 1

≥ 1

for r > 1. Using the mean value theorem, the left of this inequality equals f ′(c) for some c in the
interval [1, r] and f(x) = px. Since f ′(c) = log(p)pc ≥ log(p)p ≥ log(2)2 > 1 we’ve completed this
case.

We still need to check the second case, when ζX(1) is not a part of the γ-operations of our
monomial. Following the same process as before, we’re left to check the inequality pn − i ≥ n for
0 < i < p. But this is also readily checked to be true: we can assume we want to show pn−p+1 ≥ n;
and pn − p ≥ n− 1 is the same (ignoring the n = 1 case which is trivial) as pn−p

n−1 ≥ 1 which by the

mean value theorem equals f ′(c) for some c in the interval [1, n] and f(x) = px; for all such c we
have f ′(c) = log(p)pc ≥ log(p)p ≥ log(2)2 > 1. �

We conclude with a series of corollaries that motivated this work.

Corollary 5.8. Let B be a central simple algebra, and let Y = SB(B) be the Severi-Brauer variety
of B. Suppose ind(B) = d = pn1

1 · · · pnr
r is a prime factorization with primes p1 < · · · < pr. Then

for every pair of primes p, q ∈ {p1, ..., pr} with p ≥ q, and for all integers i satisfying 1 ≤ i ≤ q − 1

grd−iγ K(Y )⊗ Z(p) = d(1− ξ)d−iZ(p),

where ξ is the class of OXF
(−1) when identifying K(X) ⊂ K(XF ) for a splitting field F of X.

Proof. Apply Lemma 4.9, Corollary 4.12, and Theorem 5.1. �

Corollary 5.9. Let B be a central simple algebra, and let Y = SB(B) be the Severi-Brauer variety
of B. Suppose ind(B) = d = pn1

1 · · · pnr
r is a prime factorization with primes p1 < · · · < pr. Then

for all integers i satisfying 1 ≤ i ≤ p1 − 1

grd−iγ K(Y ) = d(1− ξ)d−i,
where ξ is the class of OXF

(−1) when identifying K(X) ⊂ K(XF ) for a splitting field F of X.

Proof. This is true after localizing at every prime p by Corollary 5.8, so it’s true in general. �

Corollary 5.10. Suppose B is an arbitrary central simple algebra and set X = SB(B). Suppose
ind(B) = d = pn1

1 · · · pnr
r is a prime factorization with primes p1 < · · · < pr If CH(X) is generated

by Chern classes and if the canonical epimorphism CH(X) → grτG(X), taking the class of an
integral subvariety V to the class of its structure sheaf [OV ], is an isomorphism, then for every pair
of primes p, q ∈ {p1, ..., pr} with p ≥ q,

CHj(X)⊗ Z(p) = dZ(p) for all j ≤ q − 2.

Proof. In this setting, the rings CH(X) and grγK(X) are isomorphic, [Kar17c, Theorem 3.1]. �

Corollary 5.11. Suppose B is an arbitrary central simple algebra and set X = SB(B). Suppose
ind(B) = d = pn1

1 · · · pnr
r is a prime factorization with primes p1 < · · · < pr If CH(X) is generated

by Chern classes and if the canonical epimorphism CH(X)→ grτG(X) is an isomorphism, then

CHj(X) = dZ for all j ≤ p1 − 2.
14



Proof. This is true after localizing at every prime p by Corollary 5.10, so it’s true in general. �

Remark 5.12. The conditions of Corollaries 5.10 and 5.11 hold, for example, when B is a central
simple algebra corresponding to a generic Severi-Brauer variety, see [Kar17c]. These conditions
also hold for a more general class of algebras, see [KM19]. In both of these cases, Corollaries 5.10
and 5.11 were already known to hold so, we’ve reproved and generalized this result.

These corollaries can also be extended to more general flag varieties by the following lemmas.

Lemma 5.13. Let B be a central simple algebra with ind(B) = n. Let X = SB(B) and let Y =
Vi1,..,ir(B) be the variety of flags of ideals in B of reduced dimensions i1, ..., ir. If gcd(i1, ..., ir, n) = 1
then the following statements hold:

(1) CHi(X) is torsion free for all i ≤ j if, and only if, CHi(Y ) is torsion free for all i ≤ j,
(2) CHi(X) is torsion free for all i ≤ j if, and only if, CHi(Y ) is torsion free for all i ≤ j.

Replacing everywhere CH occurs with grτG the same statements hold.

Proof. In this case one has that X × Y → Y is a projective bundle over Y and X × Y → X is a
cellular fibration over X by [PSZ08, Corollary 3.4]. Therefore⊕

CH(X) = CH(X × Y ) =
⊕

CH(Y )

and the claim follows by looking at torsion in the respective degrees. The same argument works
replacing CH by grτG. �

Lemma 5.14. Let B be a central simple algebra with ind(B) = n. Let X = SB(B) and let Y =
Vi1,..,ir(B) be the variety of flags of ideals in B of reduced dimensions i1, ..., ir. If gcd(i1, ..., ir, n) = 1
then the following statements hold:

(1) griγK(X) is torsion free for all i ≤ j if, and only if, griγK(Y ) is torsion free for all i ≤ j,
(2) grγ,iK(X) is torsion free for all i ≤ j if, and only if, grγ,iK(Y ) is torsion free for all i ≤ j.

Proof. First make a τ -functorial replacement of X with a Severi-Brauer variety X ′ associated to
a central simple algebra C. Note that, by the proof of Corollary 4.13 the variety Y ′ = Vi1,...,ir(C)
is a τ -functorial replacement of Y . Since the associated graded ring for the γ-filtration doesn’t
change when making a τ -functorial replacement, the claim follows from Corollary 5.13 applied to
grγK(X ′) = grτG(X ′) and grγK(Y ′) = grτG(Y ′). �
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Supér. (4) 41 (2008), no. 6, 1023–1053. MR 2504112

[Qui73] D. Quillen, Higher algebraic K-theory. I, 85–147. Lecture Notes in Math., Vol. 341. MR 0338129

Email address: eoinmackall at gmail.com

URL: https://www.eoinmackall.com/

16

https://sites.ualberta.ca/~karpenko/publ/yagita05.pdf
https://sites.ualberta.ca/~karpenko/publ/yagita05.pdf
https://sites.ualberta.ca/~karpenko/publ/R(G)06.pdf
https://www.eoinmackall.com/s/Bthy2.pdf
https://www.eoinmackall.com/

	1. introduction
	2. Grothendieck groups of Severi-Brauer varieties
	3. the gamma and coniveau filtrations
	4. reductions
	5. describing the -filtration
	References

