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Abstract. In this text we show that one can generalize results showing that CH2(X), for various
Severi-Brauer varieties X, is sometimes torsion free. In particular we show that for any pair of odd
integers (n,m), with m dividing n and sharing the same prime factors, one can find a central simple
k-algebra A of index n and exponent m that moreover has CH2(X) torsion free for X = SB(A).
One can even take k = Q in this construction.

Notation and Conventions. We fix a field k throughout. All of our objects are defined over k
unless stated otherwise.

If p is a prime we write vp for the p-adic valuation.

1. Introduction

Severi-Brauer varieties are a class of objects that are incredibly interesting, from the point of
view of intersection theory and, particularly, to the author of the present text. A Severi-Brauer
variety X is a twisted form of projective space, meaning that it becomes isomorphic to projective
space after moving over some finite extension of the base field. And while the intersection theory
of projective space is the simplest of examples, a Severi-Brauer variety may be one of the most
complicated, but still one of the most accessible, varieties where a complete computation of the
Chow ring seems possible.

The reason Severi-Brauer varieties seem accessible, from an intersection theory point of view, is
because they are related (equivalent) to the class of central simple algebras. More precisely, one
can associate to any central simple algebra A a Severi-Brauer variety X = SB(A) as the variety of
minimal left ideals inside of A (as a subvariety of a Grassmannian). One can then expect to get
relations in the geometry of X by knowing certain algebraic properties about A. The topic of this
text is aimed towards extending techniques showing that the Chow group of codimension 2 cycles
on X is often simpler when A is decomposable into a tensor product of smaller algebras.

The reason Severi-Brauer varieties are still difficult objects to study is largely because the nuanced
structure of central simple algebras is still mysterious. For example, one can associate to any central
simple algebra A, whose dimension is a power of a prime p, a sequence of integers depending on the
dimension of the division algebra Brauer equivalent to the ith tensor power A⊗i for varying i ≥ 0.
(The dimension of the division algebra equivalent to A is called the index of A, denoted ind(A),
and one only needs to know these indices up to the exponent exp(A) of A, i.e. the smallest i > 0
such that A⊗i is isomorphic with a matrix ring). This sequence, called the reduced behavior of A,
already completely determines the structure of the Grothendieck ring of locally free sheaves on X
(see Section 2 below for more details on this relation, background, and more).

One could hope that this sequence would also completely determine the structure of the Chow
ring of X. But, it was shown in [Kar98] that this was not the case: there are two algebras A,B
(over different fields) with associated Severi-Brauer varieties X = SB(A) and Y = SB(B), whose
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reduced behaviors are the same but, in the group CH2(X) there is nontrivial torsion and, on the
other hand, the group CH2(Y ) is torsion free.

The precise observations that differentiated the Chow groups of the varieties X,Y above were the
following. First, X was generic in some sense. This meant that the graded ring associated to the
gamma filtration on the Grothendieck ring of locally free sheaves on X agreed with the graded ring
associated to the topological, or coniveau, filtration on the Grothendieck ring of coherent sheaves
on X. Karpenko then computed the associated graded for the gamma filtration explicitly and
checked that it contained nontrivial torsion. By contrast, Y was associated to an algebra B that
was decomposable – the opposite of what one would expect to be a generic property (if one thinks
of a generic property as one that somehow specializes to every other example).

The examples of [Kar98] were an accumulation of a lot of work that had been done on the two
associated graded rings for the Grothendieck ring of a Severi-Brauer variety (see [Kar95a, Kar96,
Kar95b]). The proofs of [Kar98] are more or less elementary but, there were some unfortunate
features to these examples: the computations one needed to do could be unpleasant in any sort of
generality and, they often relied on the assumption that the Chow ring was isomorphic to a simpler
ring which, by [Mer95], didn’t always happen.

In the present text we (try to) suggest a way that one can avoid the use of the associated graded
rings of the Grothendieck ring. Every computation in the present text, with the exception of
Proposition 3.6, focuses on working solely in the Chow ring. And, although our examples rely on
results from [Kar98], these too can be recovered from the methods used here.

The main result of this text is the statement of the abstract. Essentially this text shows that
for any pair of odd integers (n,m), and assuming m divides n and that n,m have the same prime
factors, there is an algebra A having index n and exponent m such that CH2(X) is torsion free
where X = SB(A). This compliments the fact that it’s known, for example from [Kar98] together
with [Kar17], that for any pair of odd integers (n,m), with m dividing n and having the same prime
factors, there exists an algebra B having index n and exponent m such that, for Y = SB(B), the
group CH2(Y ) contains nontrivial torsion.

The techniques used in this text are, to the authors’ taste, very pleasing. Most of the utility comes
from two observations: first, there is a collection of subrings, depending only on the Grothendieck
ring of a Severi-Brauer variety X, of the Chow ring of X that behave nicely with regards to
the geometry of a Severi-Brauer variety (e.g. with respect to the structure of the Severi-Brauer
subvarieties, or with respect to the twisted Veronese or Segre embeddings); second, these subrings
can be shown, in some cases, to satisfy almost all of the functorality that the Chow ring itself
satisfies (e.g. there are pullbacks, and occasionally pushforwards that, when they exist, satisfy the
projection formula).

One can also generalize the situation above a bit. It’s known from [Kar98] that if the reduced
behavior of an algebra A, assuming A has p-power dimension, decreases by 1 at every step, or if
the algebra A has p = 2 and at the second to last step goes down by 2, then the Severi-Brauer
variety X = SB(A) can’t have torsion in CH2(X). The work in [Kar98] also shows that for any
other possible reduced behavior, there is an algebra A with this reduced behavior and such that
the group CH2(SB(A)) contains nontrivial torsion. This leads one to the following:

Question: For which reduced behaviors R can one construct an algebra A such that: the reduced
behavior of A is R, and the Chow group of codimension 2 cycles of the Severi-Brauer variety of A
is torsion free?

Now we give a rough sketch of the structure of the paper. In section 2, we discuss preliminaries
on the structure of the Chow ring of a Severi-Brauer variety. Most of this material was developed
in [KM19] but it is recalled here for convenience. In section 3 we discuss functorality of a collection
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of rings CT(i;−) and prove that, in low codimensions the group summands of these rings have
pushforwards. We also introduce a group Q(−) that has been implicitly used in [Kar17, KM19]
to compute Chow rings of particular Severi-Brauer varieties and we study this group in low codi-
mension as well. When pushforwards on CT(1;−) exist, they then also exist for Q(−); these
pushforwards are our main computational tool throughout this paper. Section 4 concludes with a
sample of how these tools could be used, e.g. for applications to torsion in CH2(−).

2. Preliminaries

Let A be a central simple algebra (over k). Over an algebraic closure, say k, there is an isomor-
phism Ak = A⊗k k ∼= Mn(k) with the ring of n× n square matrices. The dimension of A is then a
square, and we denote by deg(A) its square root; the number deg(A) is called the degree of A.

We write X = SB(A) for the associated Severi-Brauer variety of A. By definition, X is the
closed subvariety of the Grassmannian Gr(deg(A), A) of hyperplanes of dimension deg(A) inside of
A whose F -points, over any field extension F of k, are the left ideals of AF . We write

ϕA : X → Gr(deg(A), A)

to denote the canonical inclusion.
The Grassmannian comes equipped with a universal subbundle, denoted SGr, of rank deg(A). As

a vector bundle, the fiber over an R-point x, for a finite type k-algebra R, of SGr is the projective
R-module summand of A ⊗k R defining x. The pullback ζX := ϕ∗A(SGr) is called the tautological
bundle over X or, when considering the associated sheaf of ζX , the tautological sheaf over X.

By construction, the sheaf ζX is a left module under the constant sheaf A of A on X. For
any integer i ≥ 0, we pick a simple right A⊗i-module Mi. From now on we use the notation
ζX(i) := Mi ⊗A⊗i ζ⊗iX to denote the given tensor product. Since the isomorphism class of Mi is

uniquely determined by the theory of central simple algebras, see [Jac89, Chapter 4], it follows that
ζX(i) is uniquely defined, up to an isomorphism.

For a given i, the sheaf ζX(i) is locally free of rank the index of A⊗i, i.e. rk(ζX(i)) = ind(A⊗i) =
dim(Mi). The collection of such sheaves completely determines the Grothendieck ring K(X) of X.

Theorem 2.1 ([Qui73, §8, Theorem 4.1]). The group homomorphism

deg(A)−1⊕
i=0

K(A⊗i)→ K(X),

sending the class of a right A⊗i-module M to M ⊗A⊗i ζ⊗iX , is an isomorphism.

In particular, it follows from Theorem 2.1 that K(X) is additively generated by ζX(i) as i varies
in the interval 0 ≤ i ≤ deg(A) − 1. Moreover, for any field extension F/k, the homomorphism of
Theorem 2.1 commutes with the pullback to F , the induced morphism K(X)→ K(XF ) is injective,
and K(X) can be identified with a subring of K(XF ). When F is a field that splits A, meaning
that there is an isomorphism AF ∼= Mn(F ), then there is the following well-known description of
this situation:

Theorem 2.2. Let ξ denote the class of OXF
(−1) in K(XF ). Then there is a ring isomorphism

Z[x]/(1− x)n
∼−→ K(XF )

sending x to ξ.
Under this isomorphism, the class of ζX(i) is sent to ind(A⊗i)xi and K(X) identifies with the

subring of Z[x]/(1− x)n generated by these classes.
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Due to the description of K(X) given by Theorem 2.2, the sequence of integers ind(A⊗i) as i
increases turns out to be an important invariant when studying the intersection theory of X. But,
although it’s sufficient, one doesn’t need to consider all integers i to have a complete description
of K(X); there are two more observations that one can make to drastically simplify the situation.
For our purposes, it will suffice to assume ind(A) = pr is a power of a prime p. In the rest of this
section we make this assumption.

The first observation is that the indices ind(A⊗i) depend only on the p-adic valuation, vp(i), of
the integer i so, to know all of these indices, it suffices to know only the indices of the prime powers

ind(A⊗p
i
). This information is contained in the reduced behavior of A, defined as the sequence

rBeh(A) =
(
vpind(A⊗p

i
)
)m
i=0

where m = vpexp(A) is the p-adic valuation of the exponent of A, i.e. the p-adic valuation of the
order of A in the Brauer group of k. Since for any 1 ≤ i ≤ m there is an inequality

(in) vpind(A⊗p
i
) ≤ vpind(A⊗p

i−1
)− 1,

by [Kar98, Lemma 3.10], it follows that the reduced behavior is a strictly decreasing sequence
ending in 0. We note also, again by [Kar98, Lemma 3.10], that for any prime p and any strictly
decreasing sequence S ending in 0, there is a central simple algebra B with p-primary index having
rBeh(B) = S.

The second observation is that one only needs to consider a finite subset of the reduced behavior
to completely determine K(X). Let

SX = {i : vpind(A⊗p
i
) < vpind(A⊗p

i−1
)− 1}

be those integers i between 1 and m where the inequality (in) fails to be an equality. In [KM19],
the cardinality #SX is called the level of A; here we also call #SX the level of X. The relevance
of SX is apparent from the following lemma.

Lemma 2.3 ([KM19, Lemma A.6]). The ring K(X) is generated, as a λ-ring, by the classes of
the vector bundles of the set {ζX(pi)}i where i is an index for SX ∪ {0}.

Aside from providing a generating set for K(X), Lemma 2.3 also gives valuable information on
the structure of the Chern subring of the Chow ring of X. Since Chern classes in λ-operations of
an element x are polynomials in Chern classes of x, Lemma 2.3 implies that the Chern subring of
CH(X) is generated by Chern classes of the same bundles. From now on we’ll use the following
notation:

Definition 2.4. The notation CT(i1, . . . , ij ;X) will denote the graded subring of the Chow ring
CH(X) generated by the Chern classes of ζX(i1), . . . , ζX(ij).

Only the rings generated by Chern classes of one vector bundle are likely to appear. And among
these rings we focus on CT(1;X) the most since this can often be used to get information on
the rings CT(i;X). That these rings are interesting comes from the following description of their
generators.

Proposition 2.5 ([KM19, Proposition A.8]). For any i > 0, the ring CT(i;X) ⊗ Z(p) is a free

Z(p)-module. Moreover, for 0 ≤ j < deg(A) the degree j summand CTj(i;X) ⊗ Z(p) is additively
generated by the element

τi(j) := cpv(ζX(i))s0cs1(ζX(i))

where pv is the largest power of p dividing ind(A⊗i) and j = pvs0 + s1 with 0 ≤ s1 < pv.

When there’s possible ambiguity for where these classes are defined, or if confusion could occur,
we will include a superscript like τXi (j) to mean these classes are defined inside CT(i;X)⊗ Z(p).

4



3. Chow groups of Severi-Brauer varieties

Throughout this section we work with a central simple algebra A with ind(A) = pn, for some
fixed prime p and some n ≥ 0, and we write X = SB(A) for the associated Severi-Brauer variety.
We keep all other notations from Section 2.

3.1. Functorality of CT(1;−). Let F/k be a field extension and write πF/k : XF → X for the
projection from F . Since πF/k is flat, and since flat pullback commutes with Chern classes, the
map π∗F/k : CH(X)→ CH(XF ) induces a map

π∗F/k : CT(i;X)→ CT(i;XF )

for each i ≥ 1; this induced morphism will also be called the pullback along πF/k and written as
π∗F/k by abuse of notation.

Our main interest is when F/k is a finite extension. In this case one sometimes also gets an
induced pushforward on the groups CTj(i;−) for various i, j. Our goal at the moment is to describe
properties of such a pushforward when it exists. Afterwards, we prove that these pushforwards exist
in cases we will be interested in, i.e. for all i ≥ 0 and for j = 0, 1, 2.

Lemma 3.1. Write DA for the underlying division algebra of A, and set Y = SB(DA) to be the
corresponding Severi-Brauer variety. Fix a finite field extension F/k and write πF/k : XF → X for
the projection. Suppose that, for any fixed 0 ≤ j ≤ dim(Y ) (resp. for every j ≥ 0) the composition

CTj(1;YF )⊗ Z(p) ⊂ CHj(YF )⊗ Z(p)

πF/k,∗−−−−→ CHj(Y )⊗ Z(p)

has image contained in CTj(1;Y )⊗ Z(p). Then the same is true for X: for this fixed j (resp. for
every j ≥ 0) the composition

CTj(1;XF )⊗ Z(p) ⊂ CHj(XF )⊗ Z(p)

πF/k,∗−−−−→ CHj(X)⊗ Z(p)

has image contained in CTj(1;X)⊗ Z(p).

Proof. In this case, there is a closed immersion Y → X that becomes the linear inclusion of
projective spaces over an algebraic closure of k. This immersion then induces a commuting diagram
made of pushforward maps and Gysin pullbacks

CH(XF )⊗ Z(p) CH(YF )⊗ Z(p)

CH(X)⊗ Z(p) CH(Y )⊗ Z(p)

πF/k,∗ πF/k,∗

In degrees where both CH(X) and CH(Y ) are nonzero the Gysin pullback is an isomorphism and
this induces an isomorphism CT(1;X)⊗ Z(p) → CT(1;Y )⊗ Z(p) in the same degrees. This proves
the lemma in all degrees less than pn − 1 by going around the diagram above.

To complete the proof when these maps are known to exist for Y and for all j ≥ 0 one uses the
projection formula. For any j ≥ pn consider the class τ1(j) of CTj(1;XF ) ⊗ Z(p) from Proposi-

tion 2.5; this class is an additive generator for CTj(1;XF ) ⊗ Z(p) so it is sufficient to prove that
πF/k,∗(τ1(j)) is contained in CT(1;X)⊗ Z(p).

One has
πF/k,∗(τ1(j)) = πF/k,∗(cpv(ζXF

(1))s0cs1(ζXF
(1)))

where j = pvs0 + s1 and 0 ≤ s1 < pv and v = vpind(AF ). Since pn ≤ j, it follows that pn−v ≤ s0.
Because of the commutativity of Chern classes and restriction over field extensions, we have that

cpv(ζXF
(1))p

n−v
= π∗F/k(cpn(ζX(1))).
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Indeed, the Chern classes are computable

π∗F/kct(ζX(1)) = ct(ζXF
(1))p

n−v
=
(
1 + c1(ζXF

(1))t+ · · ·+ cpv(ζXF
(1))tp

v)pn−v

and, after expanding, one gets the claim as the coefficient of tp
n

in this polynomial. Then by the
projection formula (in CH(XF )⊗ Z(p)) it follows

πF/k,∗(τ1(j)) = πF/k,∗(π
∗
F/k(cpn(ζX(1)))cpv(ζXF

(1))s0−p
n−v

cs1(ζXF
(1)))

= cpn(ζX(1))πF/k,∗(cpv(ζXF
(1))s0−p

n−v
cs1(ζXF

(1))).

Since cpn(ζX(1)) is contained in CT(1;X) by definition, the lemma is proved by an inductive
argument on the degree j of τ1(j). �

Lemma 3.2. Fix a finite field extension F/k and write πF/k : XF → X for the projection. Suppose
that, for any fixed j ≥ 0, the composition

CTj(1;XF )⊗ Z(p) ⊂ CHj(XF )⊗ Z(p)

πF/k,∗−−−−→ CHj(X)⊗ Z(p)

has image contained in CTj(1;X) ⊗ Z(p). Fix an integer i > 1, let Y = SB(A⊗i), and write
πF/k : YF → Y for the projection by abuse of notation. Suppose, in addition, that the composition

CTj(1;YF )⊗ Z(p) ⊂ CHj(YF )⊗ Z(p)

πF/k,∗−−−−→ CHj(Y )⊗ Z(p)

has image contained in CTj(i;Y )⊗ Z(p).

Then, for any i > 1, the same is true for CTj(i;X): for this fixed j ≥ 0 the composition

CTj(i;XF )⊗ Z(p) ⊂ CHj(XF )⊗ Z(p)

πF/k,∗−−−−→ CHj(X)⊗ Z(p)

has image contained in CTj(i;X)⊗ Z(p).

Proof. Consider the twisted Veronese embedding

ρ : X → X × · · · ×X = X×i → Y

which factors via the diagonal map X → X×i and the closed immersion X×i → Y defined on R-
points, for any finite type k-algebra R, as the map taking an i-tuple of left ideals (J1, ..., Ji) to the
tensor product J1⊗ · · · ⊗ Ji. Note that over an algebraic closure of k the map ρ can be canonically
identified with the usual Veronese embedding of projective space so that ρ∗ζY (1) = ζX(i), see
[KM19, Lemma A.9].

Let ρF : XF → YF be the morphism induced by ρ after extending scalars to F . Then ρ fits into
a Cartesian diagram

XF YF

X Y

ρF

πF/k πF/k

ρ

with the right vertical map the projection from F , also written πF/k by abuse of notation. By
[EKM08, Corollary 55.4], the diagram induces a commutativity on Chow groups between the push-
forwards of the vertical maps and the Gysin pullbacks along ρ, ρF :

πF/k,∗ ◦ ρ∗F = ρ∗ ◦ πF/k,∗.
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By construction, this induces a commuting diagram as below.

CT(1;YF )⊗ Z(p) CT(i;XF )⊗ Z(p)

CT(1;Y )⊗ Z(p) CH(X)⊗ Z(p)

ρ∗F

πF/k,∗ πF/k,∗

ρ∗

As the horizontal arrows surject onto CT(i;−)⊗Z(p), one can conclude with a diagram chase. �

Remark 3.3. Lemma 3.1 (and Lemma 3.2) holds with integral coefficients also. But it’s less
convenient to prove, since one needs to consider the given Chern classes and powers of the first
Chern class.

Lemma 3.4. Let F/k be a finite field extension and πF/k : XF → X the projection. Suppose that
the composition (resp. this composition with Z(p)-coefficients)

CTj(i;XF ) ⊂ CHj(XF )
πF/k,∗−−−−→ CHj(X)

has image contained in CTj(i;X) (resp. CTj(i;X)⊗ Z(p)). Then the projection formula holds for
πF/k,∗, π

∗
F/k and the compositions

π∗F/k ◦ πF/k,∗ and πF/k,∗ ◦ π∗F/k
are both multiplication by [F : k].

Proof. The projection formula holds as these maps are induced by maps where the projection
formula is known to hold. To see the claim on compositions one can note that, in any degree j,
the groups CTj(i;X) and CTj(i;XF ) are isomorphic with Z. Then, by the projection formula,
πF/k,∗ ◦ π∗F/k = [F : k] so the same must be true for the other composition. �

Lemma 3.5. Let F/k be a finite extension splitting A and πF/k : XF → X the projection. Then
the composition

CTj(i;XF ) ⊂ CHj(XF )
πF/k,∗−−−−→ CHj(X)

has image contained in CTj(i;X) for any j ≥ 0 and for any i ≥ 1.

Proof. This is proved, when A is a division algebra and i = 1, in [Kar17, Proposition 3.5]. The
general case follows from Lemmas 3.1 and 3.2. �

Proposition 3.6. Let F/k be a finite field extension and πF/k : XF → X the projection. Then the
composition

CTj(i;XF ) ⊂ CH(XF )
πF/k,∗−−−−→ CH(X)

has image in CTj(i;X) when j = 0, 1 and for any i ≥ 1.
And, if one localizes at the prime ideal generated by p, the same holds in codimension 2. The

composition

CT2(i;XF )⊗ Z(p) ⊂ CH(XF )⊗ Z(p)

πF/k,∗−−−−→ CH(X)⊗ Z(p)

has image in CT2(i;X)⊗ Z(p) for any i ≥ 1.

Proof. The claim for j = 0 is trivial. The claim for j = 1 is a remark on the Picard group. More
precisely, since Pic(XF ) is torsion free for any finite extension F/k, we can prove the claim with a
computation of Chern classes. One has

π∗F/k(c1(ζX(i))) =
ind(A⊗i)

ind(A⊗iF )
c1(ζXF

(i))

7



and by the projection formula this means

ind(A⊗i)

ind(A⊗iF )
πF/k,∗(c1(ζXF

(i))) = [F : k]c1(ζX(i)).

Then one can divide by the coefficient on the left to get some integer on the multiple of c1(ζX(i))
on the right.

Now we turn to proving that there is a morphism

CT2(i;XF )⊗ Z(p)

πF/k,∗−−−−→ CT2(i;X)⊗ Z(p).

By Lemma 3.2 it suffices to show the case i = 1. The proof takes some setting-up.
We’re going to use the Grothendieck-Riemann-Roch without denominators, [Ful98, Example

15.3.6]. We write grτG(X) =
⊕

i≥0 τ
i/τ i+1 for the graded ring associated to the topological

filtration τ∗ on the Grothendieck ring of coherent sheaves on X. The Grothendieck-Riemann-Roch
without denominators gives maps

ϕ2
X : CH2(X)→ gr2τG(X) and c2 : gr2τG(X)→ CH2(X)

such that the compositions ϕ2
X ◦ c2 and c2 ◦ ϕ2

X are both multiplication by −1. The maps ϕ2
X

(with different X) are functorial in the sense that they take Chern classes to Chern classes and
commute with pushforwards. The same holds after localizing at (p) so it suffices to prove the
claim by working with the images C = ϕ2

X(CT2(1;X)⊗Z(p)) and C ′ = ϕ2
XF

(CT2(1;XF )⊗Z(p)) in

gr2τG(X)⊗ Z(p) and gr2τG(XF )⊗ Z(p) respectively.

We can assume AF is not split, because of Lemma 3.5. We set ind(A) = pn and ind(AF ) = pn−v

below. By our description from Proposition 2.5, the generator ϕ2
XF

(
τXF
1 (2)

)
in C ′ is the class

of the K-theoretic Chern class cK2 (ζXF
(1)) of G(XF ) ⊗ Z(p). Using the projection formula, we’re

going to show πF/k,∗(c
K
2 (ζXF

(1))) is a multiple of cK2 (ζX(1)) in G(X) ⊗ Z(p) which will complete
the proof. First we show something similar for π∗F/k.

Let L be a splitting field for X containing F and let πL/F : XL → XF be the projection. The
following diagram commutes and all of the arrows in it are injective.

G(XF )⊗ Z(p) G(XL)⊗ Z(p)

G(X)⊗ Z(p)

π∗
L/F

π∗
F/k

π∗
L/k

Using the notation of Theorem 2.2, and writing ξ∨ for the dual class, we have equalities(
pn

2

)
(1− ξ∨)2 = π∗L/k

(
cK2 (ζX(1))

)
= π∗L/F (π∗F/k(c

K
2 (ζX(1))))

and (
pn

2

)
(1− ξ∨)2 =

(
pn

2

)(
pn−v

2

)(pn−v
2

)
(1− ξ∨)2 = π∗L/F

( (
pn

2

)(
pn−v

2

)cK2 (ζXF
(1))

)
implying

π∗F/k(c
K
2 (ζX(1))) =

(
pn

2

)(
pn−v

2

)cK2 (ζXF
(1))

by the injectivity of π∗L/F .
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Thus, in G(X)⊗ Z(p) we have

[F : k]cK2 (ζX(1)) = πF/k,∗

(
π∗F/k

(
cK2 (ζX(1))

))
=

(
pn

2

)(
pn−v

2

)πF/k,∗(cK2 (ζXF
(1))).

But, since v = vp

((
pn

2

)
/
(
pn−v

2

))
≤ vp([F : k]) and G(X)⊗Z(p) is a free Z(p)-module, it follows that

one can divide by the coefficient of the final line of this equation. �

3.2. Generalities on Q(X). Consider the inclusion of CT(1;X) into CH(X). We denote the
group cokernel of this inclusion by Q(X). This is a graded group, with degree j summand the
quotient

Qj(X) := CHj(X)/CTj(1;X).

For any field extension F/k the pullback π∗F/k induces a morphism

π∗F/k : Qj(X)→ Qj(XF ).

If F/k is a finite field extension, and if the composition

CTj(1;XF ) ⊂ CHj(XF )
πF/k,∗−−−−→ CHj(X)

has image in CTj(1;X) then there is also a pushforward morphism

πF/k,∗ : Qj(XF )→ Qj(X).

When these pushforwards exist the composition πF/k,∗ ◦π∗F/k is multiplication by [F : k] on Qj(X).

Choosing F to be a maximal subfield of the underlying division algebra of A, and using Lemma
3.5, it follows that the degree pn = [F : k] annihilates the group Q(X). Thus, Q(X) is a p-torsion
group and can also be realized as the cokernel of the inclusion CT(1;X)⊗ Z(p) → CH(X)⊗ Z(p).

In low degrees j = 0, 1, 2, when the group CHj(X) is generated by Chern classes, one can describe
Qj(X) fairly explicitly. Recall that SX = {i : vprk(ζX(pi)) < vprk(ζX(pi−1)) − 1} is our notation
for the set considered in Section 2 depending on the reduced behavior of A. We can consider SX
as an ordered set of integers SX = {i1, . . . , ik} with i1 < · · · < ik. We write nr = vprk(ζX(pr)) for
any r ≥ 0 in the following.

Proposition 3.7. In the notation above, there are isomorphisms

Qj(X) ∼=


0 if j = 0

exp(A)Z/ind(A)Z if j = 1

〈τpi1 (2), . . . , τpik (2)〉 if j = 2

In particular, the group Q1(X) is generated by the image of τpik (1); the group Q2(X) is generated

by the images of τpi(2) for i varying over the elements of SX .

The orders of the (images of the) τpr(2) are bounded above by pn−nr−r if nr 6= 0 and by pn−r−vp(2)

if nr = 0. For each pair r, s with r > s ≥ 0 there are relations

βr,sτps(2) = αr,s2 τpr(2)

for some αr,s2 , βr,s in Z(p) that have p-adic valuation

vp(α
r,s
2 ) =

{
ns − nr − (r − s) if nr 6= 0

ns − (r − s)− vp(2) if nr = 0
and vp(βr,s) = r − s.
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Remark 3.8. There could possibly be further relations in the group Q2(X). For example, if p
is an odd prime, if A is a division algebra of index p2, exponent p and if CH(X) is generated by
Chern classes then #Q2(X) = p. But, if A is decomposable into a tensor product of two degree p
algebras, then #Q2(X) = 0.

Proof of Proposition 3.7. The statements for Q0(X) and Q1(X) are well-known. The content of
the lemma is mostly in the statement for Q2(X).

To prove the statement we are going to introduce temporary notation for a set of generators of
Q2(X). Since CH2(X) is generated by Chern classes, and all Chern classes from K(X) are classes in
ζX(pi) with i ∈ SX ∪{0} by Lemma 2.3, it’s clear that Q2(X) is additively generated by monomials

xa,b(i, j) := τpj (a)τpi(b)

where i, j ∈ SX ∪ {0} is a pair of integers, and a, b ≥ 0 is another pair of integers with a+ b = 2.
We work in cases from here. The class xa,b(0, 0) can be omitted for any a, b since this element

is trivial in Q2(X). We can also eliminate the elements xa,b(1, 1) because CH1(X) = Pic(X) is an
infinite cyclic group generated by τpik (1). More precisely, it follows that any other first Chern class
is a multiple of this one and there are equalities

xa,b(1, 1) = ma,bτpik (1)2

in CH2(X) ⊗ Z(p) for some ma,b ∈ Z(p). But, since CT2(pik ;X) ⊗ Z(p) is additively generated by
τpik (2) by Proposition 2.5, it follows there is an equality

xa,b(1, 1) = m′a,bτpik (2)

in CH2(X)⊗ Z(p) for some m′a,b ∈ Z(p). The same holds then in Q2(X).

Now consider the remaining classes x0,2(i, j) = τpj (2) for varying i, j ∈ SX (or, equivalently, the
classes x2,0(i, j)). That these classes are bounded above by the specified power of p is a consequence
of [KM19, Corollary A.13] (see also Lemma 3.9 below). To get the relations, we are going to show
that for every r > s there is an equality

βr,sτps(2) = αr,s2 τpr(2)

in CH2(X)⊗ Z(p) for some αr,s2 , βr,s ∈ Z(p) with the given properties. This is done in the following
lemma and in the subsequent corollary. �

Lemma 3.9. Pick an integer r with 0 ≤ r ≤ vpexp(A) and let i be an integer bounded like
0 ≤ i < ind(A) = pn. Then for all integers s with 0 ≤ s ≤ r, there exists a number αr,si of Z(p)

such that αr,si τpr(i) is contained in CT(ps;X)⊗ Z(p).

Moreover, the p-adic valuation of the αr,si we find is equal

vp(α
r,s
i ) =


ns − nr − (r − s) if 1 ≤ i ≤ pnr

ns − nr − (r − s)− blogp(i/p
nr)c if pnr < i ≤ pns−(r−s)

0 if pns−(r−s) < i ≤ pns − 1.

Proof. When s = 0, and A is a division algebra this is proved in [KM19, Corollary A.13]. To get
the claim in the case s = 0 and A is an arbitrary central simple algebra one can consider the Gysin
pullback of Y = SB(DA) → X, where DA is the underlying division algebra of A, and note that
CT(i;X) = CT(i;Y ) in these degrees.

In the case s > 0, write Z = SB(A⊗p
s
) and consider the composition

X → X × · · · ×X = X×p
s → Z.

The pullback along this map K(Z)→ K(X) sends ζZ(1) to ζX(ps). In this way one gets a surjection

ρ : CT(1;Z) � CT(ps;X).
10



Recall that, in order to distinguish the classes we consider, we are writing τZi (j) for the class in
CTj(i;Z)⊗ Z(p) and τXi (j) for the class in CTj(i;X)⊗ Z(p).

Then, it follows since αr−s,0i τZpr−s(i) is an element of CTi(1;Z)⊗ Z(p) that

ρ
(
αr−s,0i τZpr−s(i)

)
= αr−s,0i ρ

(
τZpr−s(i)

)
= αr−s,0i τXpr (i)

is an element of CT(ps;X)⊗Z(p). Finally, writing n′j = vprk(ζZ(pj)) and recalling nj = vprk(ζX(pj)),
we find

vp(α
r−s,0
i ) =


n′0 − n′r−s − (r − s) if 1 ≤ i ≤ pn′r−s

n′0 − n′r−s − (r − s)− blogp(i/p
n′r−s)c if pn

′
r−s < i ≤ pn′0−(r−s)

0 if pn
′
0−(r−s) < i ≤ pn′0 − 1.

The claim then follows since n′0 = ns, and n′r−s = nr �

Corollary 3.10. Keep notation as above. Then, for all 0 ≤ s < r, there are equalities

βr,sτps(2) = αr,s2 τpr(2)

in CH2(X)⊗ Z(p) for an element βr,s of Z(p) with vp(βr,s) = r − s.

Proof. It follows from Lemma 3.9 that there is some equality

βr,sτps(2) = αr,s2 τpr(2)

for an element βr,s of Z(p). To get the result, it suffices to compute the p-adic valuations of

τps(2), τpr(2) , and αr,s2 after they are pulled back to an algebraic closure. This is left to the
reader. �

4. Decomposability

In this section our goal is to describe a new method for checking torsion freeness of CH2(X)
where X is the Severi-Brauer variety of a central simple algebra A satisfying: A is a division
algebra, ind(A) = pn is a power of an odd prime p and, over a field extension F/k, the group
CH2(XF ) is torsion free.

Our main result in this regard is that, under some assumptions on the decomposability of A,
the group CH2(X) is torsion free. This extends some of the previously known examples from
[Kar98, Kar96]. More precisely, we show:

Theorem 4.1. Keep notations as above. Assume further that A decomposes into a tensor product
A = A1 ⊗A2 with exp(A2) = p and ind(A1) = exp(A1) = pb. Then CH2(X) is torsion free.

Proof. We prove this claim by induction on the index of the factor A1 over any field extension. Our
induction hypothesis will be that the claim holds for all algebras B, over any field extension of k,
that are Brauer equivalent to a division algebra DB that decomposes into a product DB = D1⊗D2

with exp(D2) = p and ind(D1) = pa for any a < b. The starting point for this induction is the case
that a = 1; in other words, we need to show that for any algebra B Brauer equivalent to a division
algebraDB admitting a decompositionD1⊗D2 satisfying exp(D2) = p, and ind(D1) = exp(D1) = p,
the Chow group CH2(SB(B)) is torsion free. This has already been done; it suffices to check
CH2(SB(DB)) is torsion free and this is proved in [Kar98, Proposition 5.3].

To check whether CH2(X) is torsion free, it suffices to assume that k is p-special. In this case,
there is a field F/k with [F : k] = p and ind(A1,F ) = pb−1. Because the exponent exp(A1) divides
[L : k]exp(A1,L) for any finite field extension L/k by [FD93, Chapter 4, Ex. 13 (c)] we also have

that exp(A1,F ) = pb−1; this will allow us to use our induction hypothesis.
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We note that

rBeh(A) = (n, b− 1, b− 2, . . . , 1, 0) and rBeh(AF ) = (n− 1, b− 2, . . . , 0)

so SXF
= {1} = SX and b − 1 ≥ 1. Thus, Lemma 4.2 below can be applied and the pushforward

πF/k,∗ : Q2(XF )→ Q2(X), that exists by Proposition 3.6, is a surjection. By the projection formula

one can also determine that, since π∗F/k : CT2(1;X)→ CT2(1;XF ) has image in pCT2(1;XF ), the

left vertical arrow in the diagram below is surjective.

0 CT2(1;XF )⊗ Z(p) CH2(XF )⊗ Z(p) Q2(XF ) 0

0 CT2(1;X)⊗ Z(p) CH2(X)⊗ Z(p) Q2(X) 0

πF/k,∗ πF/k,∗ πF/k,∗

The claim follows from the snake lemma since, by induction, the group CH2(XF )⊗ Z(p) is torsion
free. �

Lemma 4.2. Assume p is an odd prime. Let A be a central simple algebra. Assume F/k is a finite
extension of degree [F : k] = pm, with m ≥ 1. Write ni = vprk(ζX(pi)) and n′i = vprk(ζXF

(pi)).
Then, if one has an inequality

n′j +m ≤ nj
for all j ∈ SX , the pushforward πF/k,∗ : Q2(XF )→ Q2(X) is surjective.

Proof. It’s sufficient to show, in light of Proposition 3.7, that πF/k,∗ takes the elements τXF

pi
(2) of

CT2(pi;XF )⊗Z(p) to the elements τX
pi

(2) of CT2(pi;X)⊗Z(p) for all i ∈ SX . Since the composition

πF/k,∗ ◦ π∗F/k = [F : k] = pm is multiplication by pm by Lemma 3.4, it is the same as proving that

pm divides the coefficient c in the expression

(c) π∗F/k(τ
X
pi (2)) = cτXF

pi
(2)

for any i ∈ SX .
To do this we just expand the expression by hand. Since for any j ∈ SX , the term nj can’t equal

0 by assumption, all of the elements we consider are second Chern classes. Then

π∗F/k
(
ct(ζX(pi))

)
= ct(ζXF

(pi))p
ni−n′i

=
(

1 + τXF

pi
(1)t+ · · ·+ τXF

pi
(pni)tp

ni
)pni−n′i

= 1 + pni−n′iτXF

pi
(1)t+

(
p(ni−n′i)τXF

pi
(2) +

(
pni−n′i

2

)
τXF

pi
(1)2

)
t2 + · · · .

Since pm divides pni−n′i , and since τpi(1)2 is a multiple of τpi(2), it follows that pm divides the
coefficient of c in the expression (c) as claimed. �

Example 4.3. Theorem 4.1 can be used to construct central simple algebras A of index n and
exponent m with CH2(SB(A)) = Z for any pair of odd integers (n,m) with m dividing n and having
the same prime factors.

For example, let pa be the highest power of p dividing n and let pb be the highest power of p
dividing m. One can find, over say k = Q, a division algebra D0 having ind(D0) = exp(D0) = pb,
and division algebras D1, . . . , Da−b (when a 6= b) each of degree p with Dp = D0⊗D1⊗ · · · ⊗Da−b
satisfying ind(Dp) = pa. Then taking A to be the product of the Dp over all primes p dividing n
gives an algebra with CH2(SB(A)) = Z.
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Remark 4.4. The techniques above can also be used to (sometimes) get a geometric version of the
statement: if A is Brauer equivalent to a decomposable division algebra over k, then AF is Brauer
equivalent to a decomposable division algebra over any extension F/k.

To do this, let X = SB(A) and let π : XF → X be the projection. Assume that Q2(X) = 0,
assume either SXF

is empty or there is an equality of sets SX = SXF
and, in the latter case,

assume rk(ζX(pi)) = rk(ζXF
(pi)) for every i ∈ SX . Then the pullback π∗F/k : Q2(X) → Q2(XF ) is

surjective; this doesn’t require πF/k,∗ but only the description of Q2(X) given in Proposition 3.7.

This applies, for example, when A is a division algebra of index p2 and exponent p, for an odd
prime p, that decomposes into the tensor product of two division algebras of index p.
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