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Abstract. We produce an isomorphism Em,−m−1
∞

∼= Nrd1(A⊗m), between terms of the
K-theory coniveau spectral sequence of a Severi-Brauer variety X associated to a central
simple algebra A and a reduced norm group, assuming: A has equal index and exponent
over all finite extensions of its center, and SK1(A⊗i) = 1 for all i > 0.

Notation and conventions.
We work over a fixed base field k.
A variety is a separated scheme of finite type over a field.
For a prime p, we write vp(−) for the p-adic valuation.

1. Introduction

Some K-cohomology groups were studied, and computed, for Severi-Brauer varieties asso-
ciated to algebras with square-free degree in [MS82]. As an application of these computations
one can compute the Chow groups of these Severi-Brauer varieties and find they are torsion
free. Chow groups of arbitrary Severi-Brauer varieties X have been studied in depth and,
in certain degrees, are known to be torsion free (e.g. CH0(X) is free trivially, CH1(X) is
torsion free by [Art82], CH0(X) is torsion free by [CM06], if X is associated to an algebra
whose index equals its exponent then CH2(X) is torsion free by [Kar98]).

The Chow groups of Severi-Brauer varieties are not always torsion free. Their torsion
subgroups have also been studied in depth. In [Kar98], Karpenko shows, if X is a Severi-
Brauer variety associated to an algebra with differing index and exponent, CH2(X) some-
times contains a nontrivial torsion subgroup which surjects onto torsion in the graded group
associated with the coniveau filtration on the Grothendieck group G0(X). In a different
direction, Merkurjev [Mer95] has shown that there is sometimes nontrivial torsion in the
Chow groups of Severi-Brauer varieties which occurs in codimension 3 or higher; this torsion
can’t be detected by Karpenko’s methods since it’s contained in the kernel of the canonical
epimorphism from CH(X) onto the graded group associated with the coniveau filtration on
the Grothendieck group G0(X).

Recently, Karpenko has computed the Chow ring of a Severi-Brauer variety associated to
a central simple algebra with equal index and exponent under the assumption the Chow ring
is generated by Chern classes, [Kar17]. In this computation, the Chow ring turns out to
be torsion free. Without the assumption the Chow ring is generated by Chern classes, any
nontrivial torsion in the Chow ring of such a Severi-Brauer variety will come from nontrivial
differentials in the K-theory coniveau, or Brown-Gersten-Quillen, spectral sequence.
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This article stemmed from exploring the possibility of torsion in the Chow group of a
Severi-Brauer variety associated to an algebra A with index equal to its exponent. Hopefully,
it will be of use in further study of this problem.

Section 2 is mainly for reference and introducing notation. In Section 3 we prove a series
of lemmas that will be used for the main results of Sections 4 and 5.

In Section 4, we compute the Em,−m−1
∞ terms of the K-theory coniveau spectral sequence

for any Severi-Brauer variety X associated to an algebra A satisfying the properties: the
index of A is a power of a prime p, the exponent of A equals the index of A over all finite
extensions of the center of A, and the reduced Whitehead groups SK1(A

⊗r) = 1 vanish for
all r ≥ 1. This result is a direct generalization of the known computation for the terms
Em,−m
∞ and the proof of the main theorem manages to describe both simultaneously. The

main result is Theorem 4.2; it’s proof is elementary but, it requires some involved arguments
comparing the reduced norms of certain tensor powers of a given algebra.

In Section 5, we show how to prove the general case stated in the abstract using the
primary case of Section 4.

2. On the K-theory of a Severi-Brauer variety

The material in this section has been developed in detail by Quillen, [Qui73]. The K-
theory coniveau spectral sequence, or the Brown-Gersten-Quillen spectral sequence, is a
fourth quadrant cohomological spectral sequence

Ep,q
1 =

∐
x∈X(p)

K−p−q(k(x)) =⇒ G−p−q(X)

where X(p) denotes the set of codimension p points of X. For a variety X, the spectral
sequence converges, and for a regular variety X one can identify the E2-terms with K-
cohomology groups

Ep,q
2 = Hp(X,K−q) =⇒ G−p−q(X).

Recall the K-cohomology groups Hp(X,Kq) are defined to be the homology of a complex

Hp(X,Kq) = H

 ∐
x∈X(p−1)

Kq−p+1(k(x))→
∐

x∈X(p)

Kq−p(k(x))→
∐

x∈X(p+1)

Kq−p−1(k(x))

 .

In particular, the groups Hp(X,Kq) = 0 whenever p > q or p > dim(X).
The coniveau filtration is the filtration appearing in the abutment of the K-theory coniveau

spectral sequence. If X is a regular variety (which is all that is worked with in this note),
then there are natural isomorphisms Ki(X) ∼= Gi(X) and by transporting the filtration on
G-theory to K-theory we get a coniveau filtration on the groups Ki(X). The jth term of
this filtration on Ki(X) is denoted Ki(X)j below. We write Ki(X)j/j+1 for the quotient
Ki(X)j/Ki(X)j+1.

The K-theory of a Severi-Brauer variety X associated to a central simple algbera A was
computed by Quillen in terms of the tautological bundle ζX on X:
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Theorem 2.1 ([Qui73, §8, Theorem 4.1]). Let X be the Severi-Brauer variety of a central
simple algebra A. Then, for every i ≥ 0 the group homomorphism

deg(A)−1⊕
j=0

Ki(A
⊗j)→ Ki(X)

induced by the exact functor that takes a left A⊗i-module M to ζ⊗iX ⊗A⊗iM is an isomorphism.

Crucial in our computation will be the reduced norm subgroups of a central simple k-
algebra. For this, let L be a Galois splitting field for A. The first reduced norm of A is
defined to be the unique map making the following diagram commutative.

K1(AL) K1(L)

K1(A) K1(k)

det

Nrd1

The vertical arrows in this diagram are induced by extension of scalars. Similarly we define
the zeroth reduced norm of A to be the map Nrd0 : K0(A) → K0(k) taking the class of an
A-module M to the k-vector space of dimension rdimA(M), the reduced dimension of M .
For i = 0, 1 we will often use the abbreviation Nrdi(Ki(A)) := Nrdi(A).

The kernel of the map Nrdi is called the ith reduced Whitehead group and denoted SKi(−).
Note the group SK0(A) necessarily vanishes since Nrd0 is injective with image the subgroup
generated by the index of A, ind(A)Z ⊂ K0(k) = Z. The group SK1(A) doesn’t vanish in
general.

For any finite field extension E of k, the extension of scalars map ρ∗E/k : Ki(X)→ Ki(XE)

is the sum of the maps Ki(A
⊗j) → Ki(A

⊗j
E ) in the decomposition of Theorem 2.1. In the

other direction, the pushforward ρE/k∗ : Ki(XE) → Ki(X) is given by the sum of the norm

maps Ki(A
⊗j
E ) → Ki(A

⊗j) in the same decomposition. If i = 0 then the norm map is
characterized componentwise by having image the number

ρE/k∗(K0(AE)) = [E : k]
rdimAE

(M)

rdimA(N)
⊂ K0(A) = Z

where M,N are simple modules under AE, A respectively. The image of the norm maps
when i = 1 are more complicated to describe. In the simple situation we work in, these
images can be described fairly explicitly. We do this in detail in the next section.

3. Relations between reduced norms

In this section we fix a central simple algebra A over k and we set X to be the Severi-Brauer
variety associated with X.

Our first objective is to describe the image of the reduced norm using splitting fields of A:
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Lemma 3.1. Let A be a central simple algebra. Then, for every finite field extension L of
k and for i = 0, 1, the following diagram commutes

Ki(AL) Ki(L)

Ki(A) Ki(k)

Nrdi

NAL/A NL/k

Nrdi

where both NAL/A and NL/k are the norm maps induced by restriction of scalars.
Moreover, the subgroup Nrdi(A) is generated by the images NL/k(Ki(L)) as L varies over

all finite extensions of k that split A. This can be reduced further: the subgroup Nrdi(A)
is generated by the images NL/k(Ki(L)) as L varies over all finite extensions of k that are
maximal subfields of the underlying division algebra of A.

Proof. The commutativity of the digram is clear when i = 0, and is well-known (see [GS06,
Proposition 2.8.11]) when i = 1.

The only claim that needs to be proved is the last one: the subgroup Nrdi(A) is generated
by norms of maximal subfields of the underlying division algebra of A. In the case i = 0,
the claim follows from the fact such a field has degree ind(A) over k so we are left proving
the case i = 1.

For the proof when i = 1, we’ll use Morita invariance to reduce to the case A is a division
algebra and we’ll use [GS06, Proposition 2.6.3] which says Nrd1(x) = NK/k(x) for any element
x of a maximal subfield K contained in A. Any element x of A is contained in some maximal
subfield (indeed, if F is a maximal element in the collection of subfields of A containing k(x),
then the centralizer of F in A is F itself – this is known to be equivalent to being a maximal
subfield) so taking the composition

A× � K1(A)
Nrd1−−→ K1(k)

of the natural surjection and the reduced norm gives the result by the commutativity of the
given diagram. �

The K-theory of the Severi-Brauer variety X relies heavily on the tensor powers of the
algebra A due to the decomposition of Theorem 2.1. Because of this, we’ll need to investigate
certain relations between the reduced norms Nrdi(A) and Nrdi(A

⊗r) for varying r ≥ 0. It
will be necessary in our formulation of these relations to introduce some condition on the
index of A over finite extensions. From now on we’ll say an algebra A satisfies condition (C)
if:

(C) ind(AE) = exp(AE) for any finite extension E/k.

Example 3.2. Any central simple algebra of square-free index satisfies condition (C) triv-
ially. Any central simple algebra over a finite extension of Qp satisfies condition (C). Central
simple algebras over function fields of surfaces, with base a separably closed field, having
index coprime to the characteristic of the base also satisfy condition (C), see [dJ04].

Moreover, if a central simple algebra A satisfies condition (C) then so do the tensor powers
of A. This is because, given a central simple algebra A with equal index and exponent, the
indices of all tensor powers of A can be explicitly determined. If the index of A was a power
of a prime p, say pn, then A⊗p has index pn−1, cf. [Kar98, Example 3.9]. The general case
follows easily from this one.
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Remark 3.3. There exists a cyclic algebra A of index and exponent 4, over a field F of
characteristic 2, along with a finite purely inseparable field extension E/F with [E : F ] = 2
and such that ind(AE) = 4 and exp(AE) = 2 (cf. [Per41, Theorem 4]).

Lemma 3.4. Let A be a central simple k-algebra with ind(A) = pn for some n ≥ 0 and let
i = 0 or i = 1. Then

Nrdi(A
⊗j) = Nrdi(A

⊗pvp(j))

for any j > 0.

Proof. By Lemma 3.1 the subgroup Nrdi(A
⊗j) ⊂ Ki(k) is generated by the norm subgroups

NL/k(Ki(L)) as L varies over all finite extension of k splitting A⊗j. The set of such fields is

the same for A⊗j and A⊗p
vp(j)

, which proves the claim. �

Lemma 3.5. Let A be a central simple k-algebra with ind(A) = pn = exp(A) for some prime
p and some n ≥ 0. Assume A satisfies condition (C). Then for i = 0, 1 the containments

Nrdi(A
⊗pa) ⊃ Nrdi(A

⊗pb) ⊃ Nrdi(A
⊗pa)p

a−b

hold for all a ≥ b ≥ 0.

Proof. By Lemma 3.1 the subgroup Nrdi(A
⊗j) ⊂ Ki(k) is generated by the norm subgroups

NL/k(Ki(L)) as L varies over all finite extension of k splitting A⊗j. If such an L would split

A⊗p
b
, then L would also split A⊗p

a
. Hence we have the inclusion Nrdi(A

⊗pb) ⊂ Nrdi(A
⊗pa).

To show the inclusion Nrdi(A
⊗pa)p

a−b ⊂ Nrdi(A
⊗pb), we work in two cases. If a ≥ n, then

A⊗p
a

is split; if L is a maximal subfield of the underlying division algebra of A⊗p
b
, then

[L : k] = pn−b (see Example 3.2) and

Nrdi(A
⊗pa)p

a−b ⊂ pn−bKi(k) = NL/k(Ki(k)) ⊂ Nrdi(A
⊗pb).

Otherwise, when a < n, let L be a maximal subfield of the underlying division algebra of
A⊗p

a
. Then L has degree [L : k] = pn−a, the algebra AL has exponent dividing pa and, since

we’re assuming condition (C), index dividing pa. If E is a maximal subfield of the underlying

division algebra of A⊗p
b

L then [E : L] divides pa−b. Again by Lemma 3.1 we have the inclusion

NE/k(Ki(E)) ⊂ Nrdi(A
⊗pb)

since E splits A⊗p
b
. It follows that for any element x of Ki(L) ⊂ Ki(E) we have

NE/k(x) = NL/k(NE/L(x)) = NL/k(x
[E:L]) = NL/k(x)[E:L]

is contained in Nrdi(A
⊗pb). The proof is then complete since we’ve shown the collection of

elements NL/k(x)p
a−b

, as L varies over all maximal subfields of the underlying division algebra

of A⊗p
a

and x varies over Ki(L), are contained in Nrdi(A
⊗pb) and these form a generating

set by Lemma 3.1. �

Lemma 3.6. Let A be a central simple k-algebra with ind(A) = pn = exp(A) for some prime
p and some n ≥ 0. Assume A satisfies condition (C). Then for i = 0, 1 there is containment

Nrdi(A
⊗a)(

a
b) ⊂ Nrdi(A

⊗b)

for all a ≥ b > 0.
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Proof. The proof continues by working in cases: assuming either vp(a) ≤ vp(b) or vp(a) >
vp(b). In the first case, vp(a) ≤ vp(b), we appeal to Lemma 3.4 and Lemma 3.5 to find

Nrdi(A
⊗a) = Nrdi(A

⊗pvp(a)) ⊂ Nrdi(A
⊗pvp(b)) = Nrdi(A

⊗b).

In the second case, vp(a) > vp(b), we appeal to the second containment of Lemma 3.5.
That is to say, by Lemma 3.7 below we find vp(

(
a
b

)
) ≥ vp(a)− vp(b) so that

Nrdi(A
⊗a)(

a
b) ⊂ Nrdi(A

⊗pvp(a))p
vp(a)−vp(b) ⊂ Nrdi(A

⊗pvp(b)) = Nrdi(A
⊗b)

by applying Lemma 3.4 for the first inclusion, Lemma 3.5 for the second inclusion, and
Lemma 3.4 for the last equality. �

The lemma needed for the above is:

Lemma 3.7. Assume a > b and vp(a) > vp(b). Then vp(
(
a
b

)
) ≥ vp(a)− vp(b).

Proof. More generally, for any pair of integers a > b, one can show a
(a,b)

divides the binomial

coefficient
(
a
b

)
. The claim follows from noting

vp

(
a

(a, b)

)
= vp(a)− vp((a, b)) = vp(a)− vp(b).

First, write (a, b) = na+mb with n,m both integers. Then

(a, b)

a

(
a

b

)
=

(na+mb)

a

(
a

b

)
= n

(
a

b

)
+
mb

a

(
a

b

)
= n

(
a

b

)
+m

(
a− 1

b− 1

)
with the latter sum an integer. �

To go from an algebra of p-primary index to an arbitrary central simple algebra A, see
Proposition 5.1, we’ll need a characterization of Nrdi(A) in terms of the primary components
of A. For this, we fix a primary decomposition

A ∼= Ap1 ⊗ · · · ⊗ Aps
with p1, ..., ps the primes dividing ind(A) (such decompositions exist with the factors unique
up to isomorphism, see [GS06, Proposition 4.5.16]). For each algebra Apj we fix a maximal
subfield Fpj of its underlying division algebra, necessarily of degree a power of pj over k. We
set F pj to be a composite of the fields Fp1 , ..., Fpj−1

, Fpj+1
, ..., Fps , the jth field being omitted,

contained in some fixed algebraic closure L.

Lemma 3.8. In the notation above, and for i = 0, 1,

Nrdi(A) =
s⋂
j=1

Nrdi(AF pj )

inside of Ki(L).

Proof. If s = 1, the lemma is trivial so we can assume s > 1.
The inclusion ⊂ is immediate from Lemma 3.1 since a field E splitting A also necessarily

splits each of the AF pj .
For the other inclusion, ⊃, we let x be an element of the intersection. By Lemma 3.1 this

means we have equalities

x = NE1,1/F p1 (y1,1) · · ·NE1,r1/F
p1 (y1,r1)
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...

x = NEs,1/F ps (ys,1) · · ·NEs,rs/F
ps (ys,rs)

for some elements yj,k of fields Ej,k splitting AF pj respectively. It follows from these equalities
that x is an element of B = Ki(F

p1) ∩ · · · ∩ Ki(F
ps). If i = 0, then B is just ind(A)Z. If

i = 1, then, since by construction the degrees [F pj : k] are divisible by all primes dividing
ind(A) except for pj, we have gcd([F p1 : k], ..., [F ps : k]) = 1 and B = k×.

Applying the norm, from F pj to k, to the corresponding expression above for x, we find
the elements

NF pj /k(x) = NEj,1/k(yj,1) · · ·NEj,rj
/k(yj,rj)

are contained in Nrdi(A), for every 1 ≤ j ≤ s, since each Ej,k splits AF pj and so necessarily
also splits A. Since x is already contained in Ki(k), taking the norm also yields equalities

NF pj /k(x) = x[F
pj :k].

Finally, as x is in the subgroup spanned by these powers, x is contained in Nrdi(A), com-
pleting the proof. �

4. the coniveau filtration on Ki for a p-primary algebra

We fix a prime p throughout. We fix a central simple algebra A with index ind(A) = pn

and exponent exp(A) = pn for some n > 0. We write X for the Severi-Brauer variety of A.
This section describes the groups Ki(X)j and Ki(X)j/j+1 for j ≥ 0 assuming A satisfies

condition (C) and either i = 0 or, i = 1 and SK1(A
⊗r) = 1 for all r ≥ 1. In the case i = 0,

this result was shown in [Kar98, Proposition 3.3] (condition (C) is not needed in this result).
Although the only new result is when i = 1, the proof does not depend on this assumption.

We note that the assumption SK1(A
⊗r) is trivial for all powers r is another way of stating

that K1(X) → K1(XL) is injective for a splitting field L of A. The reason the latter, more
natural, assumption is not given is because it’s often easier to check that the groups SK1(A

⊗r)
are trivial. Note the analogous statement is also true replacing i = 1 with i = 0 in the above
so that the map K0(X)→ K0(XL) is always injective. Formally:

Lemma 4.1. Suppose B is an arbitary central simple algebra and let Y be the Severi-Brauer
variety of B. Let L be a splitting field for B. Then, for i = 0, 1 the pullback Ki(Y )→ Ki(YL)
is injective if, and only if, the groups SKi(B

⊗j) are trivial for all j ≥ 0.

Proof. The diagram

Ki(B
⊗r
L ) Ki(L)

Ki(B
⊗r) Ki(k)

Nrdi

Nrdi

π∗
r

commutes where the vertical arrows are the extension of scalars maps. Since the right-
vertical arrow is always an injection we find SKi(B

⊗r) = ker(π∗r). The claim then follows
from Theorem 2.1 by summing over all r ≥ 0. �

As in the above lemma, let B be an arbitrary central simple algebra and Y the associated
Severi-Brauer variety. If L is a splitting field for B, then K0(YL) is generated as a group by
the powers γi, from i = 0 to deg(B)− 1, of the element γ representing the class of OYL(−1).
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By Lemma 4.1, the pullback K0(Y ) → K0(YL) is injective and we identify K0(Y ) with its
image in K0(YL). Similarly, the group K1(YL) is a sum of groups L×γi as i ranges from i = 0
to i = deg(B) − 1. If SK1(B

⊗r) = 1 for all r ≥ 1, then the pullback K1(Y ) → K1(YL) is
injective and we identify K1(Y ) with its image in K1(YL).

Theorem 4.2. Assume A satisfies condition (C). Let L be a splitting field for A. If i = 0,
or if i = 1 and SK1(A

⊗r) = 1 for all r ≥ 1, then there is an equality (with notation as above)

Ki(X) ∩Ki(XL)j = Nrdi(A
⊗j)(γ − 1)j + · · ·+ Nrdi(A

⊗deg(A)−1)(γ − 1)deg(A)−1

for all 0 ≤ j ≤ deg(A)− 1. For j < 0, or for j > deg(A)− 1, the groups Ki(X)j = 0 vanish.

Proof. The claim when j < 0 or j > deg(A) − 1 is immediate: the first of these is by
definition, the second follows from the fact (γ − 1)deg(A) = 0 in K0(X). Recall (cf. [Pey95,
Proposition 3.6]) the coniveau filtration on Ki(XL) is given by

Ki(XL)j = Ki(A
⊗j
L )(γ − 1)j + · · ·+ Ki(A

⊗deg(A)−1
L )(γ − 1)deg(A)−1

where γ = [O(−1)] is the class of the tautological line bundle in K0(XL). Under the pullback
Ki(X)→ Ki(XL) the groups Ki(A

⊗j) are identified with the subgroups Nrdi(A
⊗j) ⊂ Ki(L).

Hence, we identify

Ki(X) = Nrdi(k) · 1 + Nrdi(A)γ + · · ·+ Nrdi(A
⊗deg(A)−1)γdeg(A)−1.

We claim

(∗) Ki(X) ∩Ki(XL)j = Nrdi(A
⊗j)(γ − 1)j + · · ·+ Nrdi(A

⊗deg(A)−1)(γ − 1)deg(A)−1.

The proof utilizes the following lemmas:

Lemma 4.3. Let A and L be as in Theorem 4.2. Fix an elemenet b in Nrdi(A
⊗k) with k ≥ 0

and i = 0 or i = 1. Then, for any sequence of integers (nj)j≥0 an equality

bxk =
∑
j≥0

aj(x+ nj)
j

inside of the free Ki(L)-module Ki(L)[x] implies aj is contained in Nrdi(A
⊗j) for all j ≥ 0.

Proof. By assumption ak = b is contained in Nrdi(A
⊗k). By descending induction on j, we

assume each aj is contained in Nrdi(A
⊗j) for all j larger than some fixed l ≥ 0. Then by

expanding the right side of the given equality and comparing coefficients yields

al = −
k∑

j=l+1

nj−lj

(
j

l

)
aj

which is contained in Nrdi(A
⊗l) due to Lemma 3.6 applied to each

(
j
l

)
aj. �

Lemma 4.4. Keeping notation as above, we have∑
j≥0

Nrdi(A
⊗j)γj =

∑
j≥0

Nrdi(A
⊗j)(γ − 1)j

inside of Ki(XL).

Proof. Setting nj = −1 for all j ≥ 0 in Lemma 4.3, and setting x = γ, shows the forward
containment. Setting nj = 1 for all j ≥ 0, and setting x = γ − 1, shows the reverse
containment. �
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Continuing with the proof of Theorem 4.2, we have

Ki(X) ∩Ki(XL)j =
∑
n≥0

Nrdi(A
⊗n)γn ∩

∑
n≥j

Ki(L)(γ − 1)j

=
∑
n≥0

Nrdi(A
⊗n)(γ − 1)n ∩

∑
n≥j

Ki(L)(γ − 1)n

=
∑
n≥j

Nrdi(A
⊗n)(γ − 1)n

as claimed. Here we used Lemma 4.4 to go from the first line to the second. �

Corollary 4.5. Let L be an algebraic closure of k. Assume A satisfies condition (C). Let
i = 0 or i = 1 and assume SKi(A

⊗r) = 1 for all r ≥ 1. Then we have an equality

Ki(X)j = Ki(X) ∩Ki(XL)j

for all j ≥ 0.

Proof. It’s clear we have the inclusion Ki(X)j ⊂ Ki(X) ∩ Ki(XL)j. By Theorem 4.2, there
is an equality

Ki(X) ∩Ki(XL)j = Nrdi(A
⊗j)(γ − 1)j + · · ·+ Nrdi(A

⊗deg(A)−1)(γ − 1)deg(A)−1.

To show the reverse containment Ki(X) ∩ Ki(XL)j ⊂ Ki(X)j we go by induction on the
index. That is to say: if E is a finite extension of k splitting A then we have containment
Ki(XE)∩Ki(XL)j ⊂ Ki(XE)j and for our induction hypothesis we assume this containment
holds for all fields E with ind(AE) < ind(A).

If E is a finite extension of k with ind(AE) < ind(A) then, using our induction hypothesis
and the assumption A satisfies condition (C), we have

Ki(X)j = ρ∗L/k(Ki(X)j)

⊃ ρ∗L/k(ρE/k∗(Ki(XE)j))

= ρE/k∗

(
Nrdi(A

⊗j
E )(γ − 1)j + · · ·+ Nrdi(A

⊗deg(A)−1
E )(γ − 1)deg(A)−1

)
.

Expanding a product (γ − 1)r and taking ρE/k∗ shows

ρE/k∗(a(γ − 1)r) = NE/k(a)(γ − 1)r.

Since all elements of Nrdi(A
⊗r) are norms from finite extensions E of k splitting A⊗r by

Lemma 3.1, it follows Ki(X) ∩ Ki(XL)j is generated by the groups on the right of the
containment above. �

Corollary 4.6. Let i = 0, or i = 1 and SKi(A
⊗r) = 1 for all r ≥ 0. Assume A satisfies

condition (C). Then there is an isomorphism

Ki(X)j/j+1 ∼= Nrdi(A
⊗j)

for all 0 ≤ j ≤ deg(A)− 1. For other j these groups vanish.

Proof. This follows immediately from Theorem 4.2 and Corollary 4.5. �
9



5. the coniveau filtration on Ki for a central simple algebra

In this section we assume B is a central simple algebra with ind(BE) = exp(BE) for all
finite field extensions E/k. We let Y be the Severi-Brauer variety of B.

Proposition 5.1. If i = 0, or if i = 1 and SK1(B
⊗r) = 1 for all r ≥ 0, then there is an

isomorphism

Ki(Y )j/j+1 ∼= Nrdi(B
⊗j)

for all 0 ≤ j ≤ deg(B)− 1. For other j these groups vanish.

Proof. Using a result of Karpenko, [Kar00, Example 10.20], we can assume B is a division
algebra throughout the proof.

Fix a primary decomposition

B ∼= Bp1 ⊗ · · · ⊗Bps

with p1, ..., ps the primes dividing ind(B). We can assume s > 1, as the result has been
proved above otherwise. For each algebra Bpj we fix a maximal subfield Fpj of its underlying
division algebra, necessarily of degree a power of pj over k. We set F pj to be a composite
of the fields Fp1 , ..., Fpj−1

, Fpj+1
, ..., Fps , the jth field being omitted, contained in some fixed

algebraic closure L of k
We first observe an equality

Ki(Y ) ∩Ki(YL)j = Nrdi(B
⊗j)(γ − 1)j + · · ·+ Nrdi(B

⊗deg(B)−1)(γ − 1)deg(B)−1.

Indeed, by Lemma 3.8 and the explicit description of Ki(Y ) given by Lemma 4.1, we have

Ki(Y ) = Ki(YF p1 ) ∩ · · · ∩Ki(YF ps )

inside of Ki(YL). Hence we get equalities

Ki(Y ) ∩Ki(YL)j = Ki(YF p1 ) ∩ · · · ∩Ki(YF ps ) ∩Ki(YL)j

=
s⋂
r=1

(
Ki(YF pr ) ∩Ki(YL)j

)
=

s⋂
r=1

(
Nrdi(BF pr )(γ − 1)j + · · ·+ Nrdi(B

⊗deg(B)−1
F pr )(γ − 1)deg(B)−1

)
= Nrdi(B

⊗j)(γ − 1)j + · · ·+ Nrdi(B
⊗deg(B)−1)(γ − 1)deg(B)−1.

A careful reading of the proof of Corollary 4.5 shows that the assumption A has p-primary
index was unnecessary. Hence the corollary can be applied to B as well to show Ki(Y ) =
Ki(Y ) ∩Ki(YL)j and the result follows. �

Acknowledgments. I’d like to thank an anonymous referee for helpful advice and sim-
plifications to the proof of Theorem 4.2.
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