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Abstract. For X a product of Severi-Brauer varieties, we conjecture: if the Chow ring of X is
generated by Chern classes, then the canonical epimorphism from the Chow ring of X to the graded
ring associated to the coniveau filtration of the Grothendieck ring of X is an isomorphism. We show
this conjecture is equivalent to: if G is a split semisimple algebraic group of type AC, B is a Borel
subgroup of G and E is a standard generic G-torsor, then the canonical epimorphism from the
Chow ring of E/B to the graded ring associated with the coniveau filtration of the Grothendieck
ring of E/B is an isomorphism. In certain cases we verify this conjecture.

Notation and Conventions. We fix a field k throughout. All of our objects are defined over k
unless stated otherwise. Sometimes we use k as an index when no confusion will occur.

For any field F , we fix an algebraic closure F .
A variety X is a separated scheme of finite type over a field.
Let X = X1 × · · · ×Xr be a product of varieties with projections πi : X → Xi. Let F1, ...,Fr be

sheaves of modules on X1, ..., Xr. We use F1� · · ·�Fr for the external product π∗1F1⊗ · · ·⊗π∗rFr.
For a ring R with a Z-indexed descending filtration F •ν , (e.g. ν = γ or τ as in Section 2), we

write griνR for the corresponding quotient F iν/F
i+1
ν . We write grνR =

⊕
i∈Z griνR for the associated

graded ring.
A semisimple algebraic group G is of type AC if its Dynkin diagram is a union of diagrams of

type A and type C. Similarly a semisimple group G is of type AA if its Dynkin diagram is a union
of diagrams of type A.

For an index set I, two elements i, j ∈ I, we write δij for the function which is 0 when i 6= j and
1 if i = j.

Given two r-tuples of integers, say I, J , we write I < J if the ith component of I is less than the
ith component of J for any 1 ≤ i ≤ r.

1. Introduction

For any smooth variety X, the coniveau spectral sequence for algebraic K-theory induces a
canonical epimorphism CH(X)→ grτG(X) from the Chow ring of X to the associated graded ring
of the coniveau filtration on the Grothendieck ring of X (for notation related to Grothendieck rings
see Section 2). The kernel of this epimorphism is torsion, as can be seen using the Grothendieck-
Riemann-Roch without denominators. In general this can’t be refined: there are examples of
smooth varieties where the kernel of the K-theory coniveau epimorphism is nontrivial. With this in
mind, a particularly difficult problem has been finding families of varieties where this epimorphism
is, or fails to be, an isomorphism. In this direction we propose the following:

Conjecture 1.1. Let X be a product of Severi-Brauer varieties. If the Chow ring CH(X) is
generated by Chern classes, then the canonical epimorphism CH(X)→ grτG(X) is an isomorphism.
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Since the ring grτG(X) is computable for such X (see Section 2 for recollections on the Grothen-
dieck rings of Severi-Brauer varieties and their products), a positive answer to Conjecture 1.1 could
then be interepreted as a method for computing the Chow ring of such varieties. This is carried
out, for instance, in [Kar17a, Theorem 3.1] where the first named author shows a special case of
Conjecture 1.1 and, using this, is able to compute the Chow ring of certain generic Severi-Brauer
varieties.

In Section 3, we give some evidence that a positive answer to Conjecture 1.1 is a likely one. The
main result of this section, Theorem 3.3, shows that Conjecture 1.1 is equivalent to a particular
case of an older conjecture of the first named author: 1

Conjecture 1.2. Let G be a split semisimple algebraic group, E a standard generic G-torsor, and
P a special parabolic subgroup of G. Then the canonical epimorphism CH(E/P )→ grτG(E/P ) is
an isomorphism.

The proof uses an analysis of the products of Severi-Brauer varieties one obtains from a standard
generic G-torsor for algebraic groups of type AA along with various specialization maps.

In Appendix A, we introduce the notion of the level of a central simple algebra. We show how
the level gives a useful description of the Grothendieck ring of a Severi-Brauer variety and use this
description in the main result of this section, Theorem A.15, where we prove Conjecture 1.1 for a
single Severi-Brauer variety associated to a central simple algebra of level 1. This generalizes the
previously known results obtained in [Kar17a, Theorem 3.1].

2. Grothendieck Rings of Severi-Brauer varieties

By K(X), we mean the Grothendieck ring of locally free sheaves (equivalently vector bundles)
on a variety X; by G(X) we mean the Grothendieck group of coherent sheaves on X. The ith term
of the γ-filtration on K(X) is denoted F iγ(X); the ith term of the coniveau filtration on G(X) is

denoted F iτ (X).
There’s a canonical map ϕX : K(X) → G(X) taking the class [L] ∈ K(X) of a locally free

sheaf L to the class [L] ∈ G(X). When X is smooth, ϕX is an isomorphism giving G(X) the
structure of a ring. The coniveau filtration is compatible with the ring structure on G(X), and
ϕX(F iγ(X)) ⊂ F iτ (X). Moreover, if the Chow ring CH(X) is generated by Chern classes, then

ϕX(F iγ(X)) = F iτ (X), cf. [Kar98, Proof of Theorem 3.7].
We will often be working with the rings K(X) for X a Severi-Brauer variety and for X a product

of Severi-Brauer varieties.
In the case X is a Severi-Brauer variety, K(X) has been determined by Quillen. To state this

result, recall that X is the variety of right ideals of dimension deg(A) in the central simple algebra
A associated with X. The tautological vector bundle ζX on X is a right A-module.

For any central simple algebra B, let us define K(B) as the Grothendieck group of the category
of finitely generated left B-modules. The group K(B) is infinite cyclic with a canonical generator
given by the class of a (unique up to isomorphism) simple B-module.

Theorem 2.1 ([Qui73, §8, Theorem 4.1]). Let X be the Severi-Brauer variety of a central simple
algebra A. The group homomorphism

deg(A)−1⊕
i=0

K(A⊗i)→ K(X),

1In its original formulation [Kar17b, Conjecture 1.1], Conjecture 1.2 only asserts there is an isomorphism in the
case P is a Borel subgroup. However, to prove Conjecture 1.2 for all special parabolic subgroups of G it suffices to
check the result holds for a particular choice of special parabolic subgroup P . These two forms of Conjecture 1.2 are
then equivalent since a Borel subgroup is special.
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mapping the class of a left A⊗i-module M to the class of ζ⊗iX ⊗A⊗i M , is an isomorphism.

Note that if F is a field over k, the pullback K(X) → K(XF ) respects the decomposition of
Theorem 2.1, is injective, and the image

K(A⊗i) ⊂ K(A⊗iF ) = Z

is generated by ind(A⊗i)/ind(A⊗iF ). For i ≥ 0, let us write ζX(i) for the tensor product (over A⊗i)

of ζ⊗iX by a simple A⊗i-module. This is a vector bundle of rank ind(A⊗i) and ζ⊗iX decomposes into

a direct sum of deg(A⊗i)/ind(A⊗i) copies of ζX(i).
A similar description is afforded to the rings K(X) for products X = X1 × · · · × Xr of Severi-

Brauer varieties:

Theorem 2.2 (cf. [Pey95, Corollary 3.2]). Let X = X1 × · · · ×Xr be a product of Severi-Brauer
varieties X1, ..., Xr corresponding to central simple algebras A1, ..., Ar respectively. Then the group
homomorphism ⊕

I<(deg(A1),...,deg(Ar))

K(A⊗i11 ⊗ · · · ⊗A⊗irr )→ K(X),

as I = (i1, ..., ir) ranges over r-tuples of nonnegative integers, is an isomorphism. Here the class

of a left A⊗i11 ⊗ · · · ⊗A⊗irr -module M is sent to the class ζ⊗i1X1
� · · ·� ζ⊗irXr

⊗
A

⊗i1
1 ⊗···⊗A⊗ir

r
M .

Similarly, if F is a field over k, the pullback K(X) → K(XF ) respects this decomposition, is
injective, and the image

K(A⊗i11 ⊗ · · · ⊗A⊗irr ) ⊂ K((A⊗i11 ⊗ · · · ⊗A⊗irr )F ) = Z

is generated by ind(A⊗i11 ⊗ · · · ⊗A⊗irr )/ind((A⊗i11 ⊗ · · · ⊗A⊗irr )F ).
Given two products of Severi-Brauer varieties X = X1 × · · · ×Xr and Y = Y1 × · · · × Yr, over

possibly different fields F1 and F2 with dim(Xi) = dim(Yi) for every 1 ≤ i ≤ r, let us identify
K(XF1

) with K(YF2
) via the isomorphism of Theorem 2.2. Let us also identify K(X) and K(Y )

with their images in K(XF1
) = K(YF2

). Note that we have K(X) = K(Y ) if and only if

ind(A⊗i11 ⊗ · · · ⊗A⊗irr ) = ind(B⊗i11 ⊗ · · · ⊗B⊗irr )

for all integers i1, ..., ir, where A1, ..., Ar are the algebras associated to X1, ..., Xr and B1, ..., Br are
the algebras associated to Y1, ..., Yr.

The following statement shows that (unlike the coniveau filtration) the γ-filtration on K(X) is
completely determined by K(X):

Theorem 2.3 ([IK99, Theorem 1.1 and Corollary 1.2]). If K(X) = K(Y ), then F iγ(X) = F iγ(Y )
for all i ≥ 0.

3. Equivalence of the two conjectures

Let G be an affine algebraic group, let U be a non-empty open G-invariant subset of a G-
representation V . If the fppf quotient U/G is representable by a scheme, and if U is a G-torsor
over U/G, then U has the property that for any G-torsor H over an infinite field F ⊃ k, there
is an F -point x of U/G so that H is isomorphic to the fiber of the morphism U → U/G over x,
c.f. [Ser03, §5]. The generic fiber E of the quotient map U → U/G is called a standard generic
G-torsor.

Example 3.1. If G = SLn, then G acts on V = End(kn) with GLn ⊂ V an open, G-invariant
subset. The generic fiber E = SLn,k(Gm) of the quotient GLn → GLn/G = Gm is a standard generic
G-torsor.

A standard generic G-torsor E exists for any affine algebraic group G: one can take E to be the
generic fiber of the quotient morphism GLn → GLn/G for any embedding G ↪→ GLn.
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Now assume G is a split semisimple algebraic group, with P a special parabolic subgroup of G,
and E a standard generic G-torsor. Recall an algebraic group H over a field k is special if every
H-torsor over any field extension of k is trivial. The quotient E/P is a generic flag variety, which
is moreover generically split, meaning that E becomes trivial after scalar extension to the function
field k(E/P ), c.f. [Kar18, Lemma 7.1].

Example 3.2. Let G = SLn/µm, where m is a divisor of n. Then G acts on X = Pn−1 and, if P
is the stabilizer of a rational point in X, the quotient G/P is isomorphic to X. The parabolic P
is special, it’s conjugacy class is given by the subset of the Dynkin daigram of G corresponding to
removing the first vertex, see [Kar18, §8].

If E is a standard generic G-torsor given as the generic fiber of a quotient map U → U/G, then
our identification of G/P ∼= X above shows that the generic flag variety E/P is a Severi-Brauer
variety over the function field k(U/G). The central simple k(U/G)-algebra associated to E/P is
called a generic central simple algebra of degree n and exponent m. The index of such an algebra
is equal to r where n = rs is a factorization of n with r having the same prime factors as m and
with s prime to m.

In [Kar17a], the first named author proves Conjecture 1.1 for the Severi-Brauer variety of a
generic central simple algebra of degree n and exponent m and, as a Corollary obtained by analysis
similar to Example 3.2 above, proves Conjecture 1.2 for split semisimple almost-simple algebraic
groups of type A and C. In this section we prove an equivalence between Conjecture 1.1 and
Conjecture 1.2 for algebraic groups of type AC similar to that obtained in [Kar17a] for a single
Severi-Brauer variety and for a split semisimple almost-simple group of type A or of type C:

Theorem 3.3. The following statements are equivalent:

(1) Conjecture 1.1 holds for all X,
(2) Conjecture 1.2 holds for all G of type AC and P given by removing the first vertex from each

of the connected components of the Dynkin diagram of G,
(3) Conjecture 1.2 holds for all G of type AC and arbitrary P ,
(4) Conjecture 1.2 holds for all G of type AA and arbitrary P .

The proof is given below Lemma 3.6, after some preparation. It proceeds by showing (1) implies
(2) implies (3) implies (4) implies (1). The most difficult part of the proof is in showing the last
step, (4) implies (1). To do this, one realizes a product of Severi-Brauer varieties X = X1×· · ·×Xr

as a specialization of a generic flag variety E/P for a certain choice of split semisimple algebraic
group G of type AA, standard generic G-torsor E, and special parabolic P . With mild hypotheses,
one can show that this will prove the claim:

Lemma 3.4. Let G be a split semisimple algebraic group of type AA, E a standard generic G-
torsor, and P a special parabolic subgroup of G. Let X be a product of Severi-Brauer varieties such
that X is a specialization of E/P . Assume the following conditions hold:

(1) CH(X) is generated by Chern classes,
(2) the canonical surjection CH(E/P )→ grτG(E/P ) is an isomorphism,
(3) the specialization K(E/P )→ K(X) is an isomorphism.

Then the canonical surjection CH(X)→ grτG(X) is an isomorphism.

Proof. Since X is a specialization of E/P , there is a commutative diagram

(D)

CH(E/P ) grτG(E/P )

CH(X) grτG(X)
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where the downward-pointing vertical arrows are specializations and the horizontal arrows are the
canonical surjections.

In the diagram (D) above, the map CH(E/P )→ grτG(E/P ) is an isomorphism by assumption
and CH(X) is generated by Chern classes by assumption. Note that CH(E/P ) is also generated by
Chern classes, by [Kar18, Corollary 7.2 and Theorem 7.3]. Since the specialization K(E/P )→ K(X)
is an isomorphism it follows the specialization CH(E/P )→ CH(X) is surjective.

The specialization grτG(E/P )→ grτG(X) is an isomorphism: it fits into the commutative square
below with the vertical arrows being specializations and the horizontal arrows being the canonical
maps; the horizontal arrows are isomorphisms since the Chow rings CH(E/P ) and CH(X) are
generated by Chern classes, [Kar98, proof of Theorem 3.7]; the left-vertical arrow is an isomorphism
since by Theorem 2.3 the isomorphism K(E/P )→ K(X) induces a bijection F iγ(E/P ) ∼= F iγ(X) for
all i.

grγK(E/P ) grτG(E/P )

grγK(X) grτG(X)

∼

∼

∼

Hence the specialization CH(E/P )→ CH(X) is also an injection and therefore an isomorphism.
It follows the canonical surjection CH(X) → grτG(X) is an isomorphism as well, completing the
proof. �

The problem is to find the correct G, P , and E that satisfy the conditions of Lemma 3.4. The
näıve method, taking E/P = E1/P1 × · · · × Er/Pr to be a product of generic flag varieties with
each Ei/Pi having Xi as a specialization fails in at least one regard: the algebras associated to
such an E/P are usually too unrelated. That is to say, the specialization in (3) of Lemma 3.4 will
typically not be a surjection.

The following result of Nguyen, giving a description to the central simple algebras obtained from
a G-torsor for split semisimple algebraic groups G of type AA, provides at least one resolution to
this problem.

Theorem 3.5 ([CR15, Theorem A.1]). Let Γ = GLn1 × · · ·×GLnr be a product of r general linear
groups for some integers n1, ..., nr. Let C be a central subgroup of Γ, and write G = Γ/C. Let
π : G → Γ/Z(Γ) be the natural projection. Then, for every field extension F of k, π∗ identifies
H1(F,G) with the set of isomorphism classes of r-tuples (A1, ..., Ar) of central simple F -algebras
such that the degree of each Ai is deg(Ai) = ni, and A⊗m1

1 ⊗ · · · ⊗ A⊗mr
r is split over F for every

r-tuple of

X ∗(Z(Γ)/C) = {(m1, ...,mr) ∈ Zr | τm1
1 · · · τmr

r = 1 ∀(τ1, ..., τr) ∈ C}.

To apply the theorem above to get the same description for the algebras associated to a G-torsor
for a split semisimple algebraic group G of type AA, one notes that such a G is isomorphic to a
quotient of a product Gsc = SLn1×· · ·×SLnr by a central subgroup C of Gsc. One can then use the
quotient G′ = Gred/C of the reductive group Gred = GLn1×· · ·×GLnr and the canonical inclusion
ι : G→ G′, taking into account that the induced map on cohomology ι∗ : H1(F,G)→ H1(F,G′) is
a surjection (with trivial kernel).

It turns out, with the description given in Theorem 3.5, one has sufficient control to ensure the
conditions of Lemma 3.4 hold (up to introducing some additional factors, which won’t matter in
the end).

Lemma 3.6. Let X1, ..., Xr be a finite number of Severi-Brauer varieties corresponding to central
simple k-algebras A1, ..., Ar and let X = X1 × · · · ×Xr be their product. Let ni = deg(Ai) for all
1 ≤ i ≤ r. For every r-tuple of nonnegative integers I = (i1, ..., ir), write DI for the underlying
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division algebra of the product A⊗i11 ⊗ · · · ⊗A⊗irr and write YI = SB(DI) for the associated Severi-
Brauer variety. Let Z = X ×

∏
I<(n1,...,nr)

YI .

In this setting, there exists a split semisimple algebraic group G of type AA and a special parabolic
P of G so that for any standard generic G-torsor E, the variety Z is a specialization of E/P and
the specialization map K(E/P )→ K(Z) is an isomorphism.

Proof. For every such r-tuple I = (i1, ..., ir) we set mI := ind(DI) to be the index of DI . The
group

Gsc =
r∏
j=1

SLnj ×
∏

I<(n1,...,nr)

SLmI

is split, semisimple, and simply connected of type AA. We consider the quotient G := Gsc/S, where
S is the subgroup of the center of Gsc consisting of those elements

(x1, ..., xr, x(0,...,0), ..., x(n1−1,...,nr−1))

satisfying the relation x(i1,...,ir) = xi11 · · ·xirr (when identified with elements of Gm). Let E be a
standard generic G-torsor. We let

σ : G→ Gad, πi : Gad → PGLni , πI : Gad → PGLmI

be the canonical isogeny, projection to the ith factor for i ≤ r, and projection to the factor
corresponding to the r-tuple I respectively.

Let Gred be the reductive group

Gred =
r∏
j=1

GLnj ×
∏

I<(n1,...,nr)

GLmI

and set G′ = Gred/S. Let T be the kernel of the quotient Gred → Gad. We fix the isomorphism
of the character group X ∗(T ) = Hom(T,Gm) ∼= Zn that identifies the character with weights
(i1, ..., in) with the element (i1, ..., in). The subgroup S above is defined so that the inclusion
X ∗(T/S)→X ∗(T ) identifies X ∗(T/S) with the sublattice generated by those elements

(i1, ..., ir,−δI(0,...,0), ...,−δI(n1−1,...,nr−1)),

where I = (i1, ..., ir) < (n1, ..., nr) is an r-tuple. For any field extension F of k, the map σ∗ :
H1(F,G)→ H1(F,Gad) factors through the map H1(F,G)→ H1(F,G′), induced by the inclusion
of G into G′; this puts us in position to apply the description in Theorem 3.5 of the algebras
Bi := (πi ◦ σ)∗(E), CI := (πI ◦ σ)∗(E). In particular, our choice of S implies B⊗i11 ⊗ · · · ⊗ B⊗irr is
Brauer equivalent with C(i1,...,ir).

Again by Theorem 3.5, each of the algerbas Ai are specializations of the algebras Bi and, addi-
tionally, for every r-tuple I = (i1, ..., ir) we have an equality

mI = ind(A⊗i11 ⊗ · · · ⊗A⊗irr ) = ind(B⊗i11 ⊗ · · · ⊗B⊗irr )

since the underlying division algebra DI of A⊗i11 ⊗ · · · ⊗ A⊗irr is a specialization of CI . The first
claim then results from the fact the variety

r∏
i=1

SB(Bi)×
∏

I<(n1,...,nr)

SB(CI)

is isomorphic with E/P which has Z as a specialization. The second claim results from the de-
scription of the rings K(E/P ) and K(Z) given in Theorem 2.2. �

And now for the proof:
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Proof of Theorem 3.3. We show (1) implies (2). To start, let G be a group of type AC and E be a
standard generic G-torsor over a field extension F of our base k. Let Gad be the adjoint group of
G; it is isomorphic to a product

Gad =
n∏
i=1

Gi

with each Gi a simple adjoint group of type A or type C. We write σ : G→ Gad for the canonical
isogeny from G to its adjoint and πi : Gad → Gi for the projection to the ith factor of Gad.

From the n maps πi◦σ with varying i, we obtain n central simple F -algebras given by the images
of E under the pushforwards on Galois cohomology

(πi ◦ σ)∗(E) ∈ im(H1(F,G)→ H1(F,Gi)).

Let X be the product of the Severi-Brauer varieties associated to the n algebras (πi ◦σ)∗(E). Then
X is isomorphic to E/P , where P is a parabolic subgroup of G whose conjugacy class is given by
the subset of the set of vertices of the Dynkin diagram of G obtained by excluding the first vertex
of each of its connected components. That the parabolic P obtained in this way is special is a
consequence of Lemma 3.8 below since, by [Kar18, §8], the group σ(P ) is special. The claim now
follows from [Kar18, Corollary 7.2 and Theorem 7.3], which shows CH(X) is generated by Chern
classes, allowing us to apply (1) to X ∼= E/P .

(2) implies (3) is a consequence of [Kar17a, Lemma 4.2].
(3) implies (4) is obvious.
We finish by showing (4) implies (1). Let X1, ..., Xr be Severi-Brauer varieties over a field k,

corresponding to central simple algebras A1, ..., Ar respectively, and let X = X1×· · ·×Xr be their
product. Let ni = deg(Ai) be the degree of the algebra Ai. For every r-tuple of nonnegative integers

I = (i1, ..., ir) we write DI for the underlying division algebra of the tensor product A⊗i11 ⊗· · ·⊗A⊗irr .
We write YI := SB(DI) for the associated Severi-Brauer variety and Z = X ×

∏
I<(n1,...,nr)

YI for

the product of these varieties.
Let G and P be respectively an algebraic group of type AA and its special parabolic subgroup,

obtained from Z as in Lemma 3.6. Let E be a standard generic G-torsor. By Lemma 3.7 below,
to show the epimorphism CH(X) → grτG(X) is an isomorphism, it’s sufficient to show CH(Z) →
grτG(Z) is an isomorphism since the projection Z → X factors

Z → X ×
∏

I<(n1,...,nr−1,nr−1)

YI → · · · → X × Y(0,...,0) → X

with each arrow a projective bundle. Finally, the arrow CH(Z) → grτG(Z) is an isomorphism
by Lemma 3.4: CH(Z) is generated by Chern classes by repeated applications of the projective
bundle formula and the assumption CH(X) is generated by Chern classes, the map CH(E/P ) →
grτG(E/P ) is an isomorphism by assumption, and the specialization K(E/P ) → K(Z) is an iso-
morphism. �

Lemma 3.7. Assume Z is a projective bundle over a variety X. Then the canonical epimor-
phism CH(Z)→ grτG(Z) is an isomorphism if, and only if, the canonical epimorphism CH(X)→
grτG(X) is an isomorphism.

Proof. The pullback along the projection Z → X gives a commuting diagram

CH(Z) grτG(Z)

CH(X) grτG(X)
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with both vertical arrows injections. It follows if the top-horizontal arrow is an isomorphism, then
the bottom-horizontal arrow is an isomorphism.

The converse follows from the projective bundle formula: the groups CH(Z) and grτG(Z) are
direct sums of several copies of of the groups CH(X) and grτG(X) respectively, and the coniveau
epimorphism respects this direct sum decomposition. �

Lemma 3.8. Let G be a split semisimple algebraic group over a field F , and σ : G → Gad the
canonical isogeny with kernel C, the center of G. If P is a parabolic subgroup of G such that the
image σ(P ) is special, then P is special.

Proof. Let L be a Levi subgroup of P . By [Kar18, §3], P is special if and only if L is special. Since
G is a split reductive group, P is also a split reductive group so that, by [Kar18, Theorem 2.1], L is
special if and only if the semisimple commutator L′ ⊂ L is special. Similarly, σ(P ) is special if and
only if σ(L)′ is special. Thus the proof of the lemma can be reduced to the following statement: if
L′ is a split semisimple algebraic group and L′ → σ(L)′ is an isogeny with σ(L)′ split, semisimple,
and special, then L′ is special. The result then follows from the fact a split semisimple algebraic
group is special if and only if it is a product of special linear or symplectic groups and all such
groups are simply connected. �

We conclude this section with some remarks on, and special cases of, Conjectures 1.1 and 1.2.

Remark 3.9. One can construct a large class of products X of Severi-Brauer varieties which satisfy
the condition CH(X) is generated by Chern classes. To do so, let G = PGLn1 × · · · × PGLnr for
some n1, .., nr ≥ 2; let A1, ..., Ar be the central simple algebras associated to a standard generic
G-torsor; let X be the product of the associated Severi-Brauer varieties. By [Kar18, Theorem 7.3],
CH(X) has the desired property.

One can extend this class by base change: it’s possible to lower the index of any tensor product
A = A⊗i11 ⊗ · · · ⊗A⊗irr by extending the base to the function field of any generalized Severi-Brauer
variety of A. The new variety X obtained from these algebras also has the property CH(X) is
generated by Chern classes, [Kar98, Theorem 3.7]. This procedure can be repeated indefinitely.

In fact, to prove Conjecture 1.1 for all products of Severi-Brauer varieties, it suffices to prove
Conjecture 1.1 for the varieties obtained by the above procedure (one can even restrict to the class
whose construction involves the function field of usual Severi-Brauer varieties only); to go from the
above case to the general case, one can use the specialization argument as in Theorem 3.3.

Example 3.10 (A1 × A1 and A1 × A1 × A1). In small rank cases, one can check Conjecture 1.2
for G of type AA by hand.

For G as in Conjecture 1.2 of type A1 × A1 one can observe: for any projective homogeneous
variety X of dimension less or equal 2, the epimorphism CH(X)→ grτG(X) is an isomorphism, cf.
[CM06, Proposition 4.4].

For G as in Conjecture 1.2 of type A1 ×A1 ×A1, one can proceed by cases. If G is a product of
groups of smaller rank, then [Kar17b, Proposition 4.1] proves the claim. Otherwise, G is a quotient
of SL2× SL2× SL2 by the diagonal of the center µ2×µ2×µ2 or by the subgroup generated by the
partial 2-diagonals. In the first case, the corresponding generic flag variety is a product C ×C ×C
of a fixed conic C and the claim follows. In the second case, the corresponding generic flag variety
is a product X = C1×C2×C3 where each Ci is the conic of a quaternion algebra Qi; here the sum
of the classes [Q1] + [Q2] + [Q3] is trivial in the Brauer group. Since X is a projective bundle over
any two of the factors this proves the result by Lemma 3.7.

Example 3.11. Conjecture 1.2 holds for G = SLn/µm by [Kar17a, Theorem 1.1] and for products
of such groups by [Kar17b, Proposition 4.1]. From this, one can show Conjecture 1.1 holds for
products X = X1 × · · · ×Xr satisfying the following conditions:
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(1) for each 1 ≤ i ≤ r there is a prime pi so that the algebra Ai associated to the variety Xi has
index pni

i and exponent pmi
i for some integers ni ≥ mi ≥ 1,

(2) the algebras Ai satisfy ind(A
⊗pmi−1

i
i ) = ind(Ai)/p

mi−1
i ,

(3) the algebras Ai are disjoint in the sense there are equalities

ind(A⊗ir1 ⊗ · · · ⊗Airr ) = ind(A⊗i11 ) · · · ind(A⊗irr )

for all integers i1, ..., ir.

To see this, one may assume that all Ai are division algebras and use Lemma 3.4. Property
(2) allows one to realize such an X as a specialization of E/P where E is a standard generic
G =

∏
1≤i≤r SLpni

i
/µpmi

i
-torsor and P ⊂ G is a special parabolic subgroup whose conjugacy class

can be obtained by removing the first vertex from each of the connected components of the Dynkin
diagram of G. The canonical map CH(E/P ) → grτG(E/P ) for this E/P is an isomorphism, as
explained above. Now property (3), [Kar17b, Lemma 4.3], and Theorem 2.3 show the specialization
K(E/P )→ K(X) is an isomorphism.

Appendix A. Algebras with level 1

In this appendix we introduce the level of a central simple k-algebra. The level is a nonnegative
integer that measures, roughly speaking, how far away the algebra is from having its index equal to
its exponent. It’s related to, and depends on, the reduced behavior of the primary components of
the algebra as defined in [Kar98]. The same concept was considered in [Bae15], there as the length
of a reduced sequence obtained from the reduced behavior of a p-primary algebra for a prime p; the
length of this reduced sequence as defined by Baek is equal to the level of the p-primary algebra as
defined here.

It turns out the level of a central simple algebra A can be used to obtain detailed information on
λ-ring generators for the Grothendieck ring of the Severi-Brauer variety X of A, see Lemma A.6.
A particular consequence of this is that the subring of CH(X) which is generated by Chern classes
has an explicit and small set of generators that can be helpful for computational purposes. Using
this more refined information based on the level, we’re able to generalize the results of [Kar17a] to
prove the main result, Theorem A.15, that the K-theory coniveau epimorphism is an isomorphism
for Severi-Brauer varieties whose Chow ring is generated by Chern classes and whose associated
central simple algebra has level 1.

Throughout this appendix we work with a fixed prime p and we continue to work over the fixed
but arbitrary field k. We write vp(−) for the p-adic valuation. We’ve relegated some computations
needed in this section to Appendix B.

Recall, the reduced behavior of an algebra A with index ind(A) = pn and exponent exp(A) = pm,
0 < m ≤ n, is defined to be the following sequence of p-adic orders of increasing p-primary tensor
powers of A:

rBeh(A) =
(
vp(ind(A⊗p

i
))
)m
i=0

=
(
vp(ind(A)), vp(ind(A⊗p)), ..., vp(ind(A⊗p

m
))
)
.

The reduced behavior of A is strictly decreasing; it starts with vp(ind(A)) = n and ends with
vp(ind(A⊗p

m
)) = 0.

Definition A.1. A is said to have level l, abbreviated lev(A) = l, if there exist exactly l distinct

integers i1, ..., il ≥ 1 with vp(ind(A⊗p
ik )) < vp(ind(A⊗p

ik−1
)) − 1 for every 1 ≤ k ≤ l. If no such

integers exist, A is said to have level 0. An arbitrary central simple algebra B, not necessarily
p-primary, is said to have level l if l is the maximum

l = max
q prime

{lev(Bq)}
9



of the levels of the q-primary components Bq of B.

Example A.2. A central simple algebra A has level 0, i.e. lev(A) = 0, if and only if the index and
exponent of A coincide, ind(A) = exp(A).

Example A.3. If A is a generic algebra of degree pn and exponent pm with m < n, in the sense
of Example 3.2, then the level of A is 1, i.e. lev(A) = 1. The reduced behavior for this algebra is

rBeh(A) =
(
vp(ind(A)), vp(ind(A⊗p)), ..., vp(ind(A⊗p

m
))
)

= (n, n− 1, ..., n−m+ 1, 0).

To see this, note that with a large enough field extension F of k one may find a central division F -
algebra B with index pn, exponent pm, and reduced behavior rBeh(B) = (n, n−1, ..., n−m+ 1, 0),
[Kar98, Lemma 3.10]. Since B is a specialization of A it follows

pn−i ≥ ind(A⊗p
i
) ≥ ind(B⊗p

i
) = pn−i

for i = 0, . . . ,m− 1, so that equalities hold throughout.

We make the following definition for notational convenience.

Definition A.4. The Chern subring of a smooth variety X, denoted CS(X), is the subring of
CH(X) which is generated by all Chern classes of elements of K(X).

Proposition A.5. Let X be the Severi-Brauer variety of a central simple algebra A with ind(A) =
pn and lev(A) = r. Then CS(X) is generated, as a ring, by the Chern classes of r + 1 sheaves on
X. Namely, the sheaves whose Chern classes generate CS(X) are:

ζX(1), ζX(pi1), . . . , ζX(pir),

where 1 ≤ i1 < · · · < ir are the r distinct integers with vp(ind(A⊗p
ik )) < vp(ind(A⊗p

ik−1
))− 1.

Proof. It suffices to show that K(X) is generated by the classes of

ζX(1), ζX(pi1), . . . , ζX(pir)

as a λ-ring; this is because Chern classes of λ-operations of an element of K(X) are certain universal
polynomials in the Chern classes of this element. This is done in the next lemma. �

Lemma A.6. Let X be the Severi-Brauer variety of a central simple algebra A with ind(A) = pn

and lev(A) = r. Then K(X) is generated, as a λ-ring, by r + 1 elements. Namely, the sheaves
whose classes generate K(X) are:

ζX(1), ζX(pi1), . . . , ζX(pir),

where 1 ≤ i1 < · · · < ir are the r distinct integers with vp(ind(A⊗p
ik )) < vp(ind(A⊗p

ik−1
))− 1.

Proof. Since the pullback π∗ : K(X)→ K(XL) to a splitting field L of A is injective, we can work,
instead of K(X) itself, with its image in K(XL). We’ll write ξ to denote the class of O(−1) in
K(XL). By the comments under Theorem 2.1 we have π∗(ζX(i)) = ind(A⊗i)ξi. It follows that the
elements ind(A⊗i)ξi with i ≥ 0 generate K(X) as an abelian group.

The λ-operations of any multiple of ξi are easy to compute:

λj(dξi) =

(
d

j

)
ξij for any i, j, d ≥ 0.

Let us first show that the elements ind(A⊗p
j
)ξp

j
(j ≥ 0) generate K(X) as a λ-ring. Since the

λ-subring generated by these elements contains powers of ind(A)ξ = pnξ, we only need to check
that, for every i ≥ 1, this subring contains an integer multiple of ξi whose coefficient has p-adic
valuation equal vp(ind(A⊗i)). For this, given any i ≥ 1, we write i = pjs with j ≥ 0 and s prime-

to-p. We set pv := ind(A⊗i) = ind(A⊗p
j
). Write further s = s0p

v + s1 with 0 ≤ s1 < pv and s0 ≥ 0.
10



Then we have λp
v
(pvξp

j
) = ξp

jpv and λs1(pvξp
j
) is a multiple of ξp

js1 with p-adic valuation of the
(binomial) coefficient of this multiple equal pv, see [Kar98, Lemma 3.5]. The claim we are checking
follows.

It remains to show if vp(ind(A⊗p
j
)) ≥ vp(ind(A⊗p

j−1
)) − 1 for some j ≥ 1, then the generator

ind(A⊗p
j
)ξp

j
can be omitted. Let us set pv := ind(A⊗p

j−1
). If v = 0, then we get ξp

j
as a pth

power of ξp
j−1

= ind(A⊗p
j−1

)ξp
j−1

. For v > 0, we consider the λ-operation λp(pvξp
j−1

) which is a

multiple of ξp
j

with p-adic valuation of its coefficient equal v − 1 ≤ vp(ind(A⊗p
j
)). �

To systematically study the relations between the Chern classes of the sheaves appearing in
Proposition A.5, we introduce:

Definition A.7. Let A be a central simple algebra and X the Severi-Brauer variety of A. We
write CT(i1, ..., ir;X) for the graded subring of CS(X) ⊂ CH(X) generated by the Chern classes
of the sheaves ζX(i1), ..., ζX(ir).

Proposition A.8. Let X be the Severi-Brauer variety of a central simple algebra A. Then, for
any i > 0, CT(i;X) ⊗ Z(p) is a free Z(p)-module. Moreover, for 0 ≤ j < deg(A) the group

CTj(i;X)⊗ Z(p) is additively generated by

τi(j) := cpv(ζX(i))s0cs1(ζX(i))

where pv is the largest power of p dividing ind(A⊗i) and j = pvs0 + s1 with 0 ≤ s1 < pv.

Proof. By first extending to a prime-to-p extension (which is an injection when CH(X)⊗ Z(p) has
Z(p)-coefficients) that splits the prime-to-p components of A, we can assume A is p-primary. We
continue by reducing to the case i = 1.

Lemma A.9. Let X be the Severi-Brauer variety of a central simple algebra A, and let Y be the
Severi-Brauer variety of A⊗i. Then there is a functorial surjection

CT(1;Y ) � CT(i;X).

Proof. Let

X → X×i → Y

be the composition of the diagonal embedding and the twisted Segre embedding. The corresponding
maps on Grothendieck groups can be determined by moving to a splitting field L of X. There is a
commutative diagram

K(YL) K(X×iL ) K(XL)

K(Y ) K(X×i) K(X)

defined so that under the top-horizontal maps we have

OYL(−1) 7→ OXL
(−1) � · · ·�OXL

(−1) 7→ OXL
(−i).

Thus, the class of ζY (1) on Y is mapped to the class of ζX(i) on X.
So under the composition of the diagonal X → X×i and the twisted Segre embedding X×i → Y ,

there is a surjection CT(1;Y ) � CT(i;X) induced by the pullback CH(Y )→ CH(X). �

Next we reduce to the case our algebra is division. Let D be the underlying division algebra of
A, and Y the Severi-Brauer variety of D. Fix an embedding Y → X so that, over a splitting field
of both, the inclusion is as a linear subvariety. The pullback

CH(X)⊗ Z(p) → CH(Y )⊗ Z(p)

11



is an isomorphism in degrees where both groups are nonzero. If the claim is true for CH(Y )⊗Z(p)

then, since the pullback is functorial for Chern classes, we find CTj(1;X)⊗Z(p) is a free Z(p)-module
of rank 1 in degrees 0 ≤ j < deg(D). That this holds is due to [Kar17a, Proposition 3.3], where
it’s shown CT(1;X) is free if A is division. This will serve as the base case for an induction proof.

In an arbitrary degree j between deg(D) ≤ j < deg(A), we assume the claim is true for all
degrees 0 ≤ k < j. It suffices to show the multiplication by τ1(p

v) = cpv(ζX(1)) map

CTj−pv(1;X)⊗ Z(p) → CTj(1;X)⊗ Z(p)

is surjective and, by Nakayama’s Lemma, we can do this modulo p. Any element of CTj(1;X)
is a sum of monomials of the form τ1(j − pv)cn1

i1
· · · cnr

ir
with ci = ci(ζX(1)). We claim any such

monomial which is not τ1(j) = τ1(j − pv)τ1(pv) is congruent to 0 modulo p.
Indeed, if such a monomial was divisible by ci1 , ci2 then without loss of generality we can assume

vp(i2) ≤ vp(i1) < v. By [Kar17a, Proposition 3.5] there is a field F finite over the base so that
vpind(AF ) = vp(i1), and ci1 = π∗(x) for an element x of CH(XF )⊗ Z(p) and where π : XF → X is
the projection. Using the projection formula we find

ci1ci2 = π∗(x)ci2 = π∗(xπ
∗(ci2)).

By Lemma A.10 below, it follows π∗(ci2) is divisible by p which proves the claim.
To see the generators are as claimed for i = 1, one can compute the degrees of the images of the

Chern classes of ζX(1) over an algebraic closure; for the other i, one can use Lemma A.9. �

Lemma A.10. Let X be the Severi-Brauer variety of a central simple algebra A with ind(A) = pv.
Let F be a field with pv−s = ind(AF ) < ind(A) = pv and let π : XF → X be the projection. Then

π∗(cj(ζX(1)) = 0 (mod p)

for all j not divisible by pv.

Proof. We have π∗(ζX(1)) = ζXF
(1)⊕p

s
with ps = ind(A)/ind(AF ). By functorality we have

π∗(cj(ζX(1))) = cj(ζXF
(1)⊕p

s
).

We’re going to compute the total Chern polynomial of ζXF
(1)⊕p

s
modulo p. If F splits A then

ct(ζXF
(1)⊕p

s
) = (1 − h)p

s
= 1 ± hp

s
(mod p) where h is the class of a hyperplane in CH(XF ).

Otherwise v 6= s and we have

ct(ζXF
(1)⊕p

s
) = ct(ζXF

(1))p
s

= (1 + c1t+ · · ·+ cpv−stp
v−s

)p
s

with ci = ci(ζXF
(1)). Using the multinomial formula, the latter expression can be rewritten

(1 + c1t+ · · ·+ cpv−stp
v−s

)p
s

= 1 +

pv∑
j=1

 ∑
|I|=ps

i1+2i2+···+pv−sipv−s=j

(
ps

i0, i1, ..., ipv−s

)
ci11 · · · c

ipv−s

pv−s

 tj .

Here the notation means
(

n
a0,...,ai

)
= n!

a0!···ai! and I = (i0, ..., ipv−s) is a tuple of nonnegative integers

with |I| = i0 + · · ·+ ipv−s .

By Lemma B.3, p divides all of the coefficients
(

ps

i0,...,ipv−s

)
except when ps divides one of

i0, ..., ipv−s . We are left to show cp
s

ik
= 0 modulo p for any k = 0, ..., pv−s − 1. Using [Kar17a,

Proposition 3.5], we can find a finite field extension E/F lowering the index of AF and such that
cik = ρ∗(x) for some x in CH(XE) ⊗ Z(p) and for ρ : XE → XF the projection. The projection
formula then gives

cp
s

ik
= ρ∗(x(ρ∗ρ∗(x))p

s−1) = 0 (mod p)
12



since ρ∗ρ∗ = [E : F ]. �

Corollary A.11. Let A be a central simple algebra and X its associated Severi-Brauer variety.
The classes τi(j) of CH(X)⊗ Z(p) satisfy the relations:

(1) for all i ≥ 1, we have τi(0) = 1,
(2) for any j ≥ 0, we have τi(p

v)τi(j) = τi(p
vj), where v = vp(ind(A⊗i)),

(3) for any integers a1, ..., apv ≥ 0, there is a relation

τi(1)a1 · · · τi(pv)apv = ατi(a1 + 2a2 + · · ·+ pvapv)

for some α in Z(p) with

vp(α) =


0 if v = 0∑pv

k=1(v − vp(k))ak if v > 0 and j = 0 (mod pv)

vp(r)− v +
∑pv

k=1(v − vp(k))ak if v > 0 and j 6= 0 (mod pv)

where we write j = a1 + 2a2 + · · ·+ pvapv and 0 ≤ r < pv is the remainder in the division of
j by pv.

Proof. We remark that the definition of the classes τi(j) makes sense for any integer j ≥ 0 but
when j > deg(A) these classes are 0. For simplifications below, we don’t put any upper bound on
the value j may have.

The relation (1) is obvious from the definition. The relation (2) is also clear from the definition.
So we’re left proving the complicated relation (3). To do this, we pullback, to a splitting field L,
the left and right side of the equation in (3) and compare p-adic valuations of their coefficients
on the element hj where h is the class of a hyperplane over L. Some immediate observations for
the following: we can assume j isn’t larger than the dimension of X and we can assume v > 0;
otherwise the claim is trivial.

The pullback of τi(1)a1 · · · τi(pv)apv can be written βhj where

vp(β) =

pv∑
k=1

(v − vp(k) + vp(i)k)ak.

Similarly, the pullback of τi(a1 + · · ·+ pvapv) can be written γhj with

vp(γ) =

{
vp(i)p

vs0 if j = 0 (mod pv)

vp(i)p
vs0 + v − vp(s1) + vp(i)s1 if j 6= 0 (mod pv)

where j = s0p
v + s1 and 0 ≤ s1 < pv. Since vp(γ) ≥ vp(β) by Proposition A.8, the result follows

by subtracting. �

Lemma A.12. Let A be a central simple algebra with ind(A) = pn and rBeh(A) = (n0, ..., nm).
Let X be the Severi-Brauer variety of A. Then, for any pair of integers i, j with 0 ≤ i ≤ j ≤ m,
the total Chern polynomial

ct(ζX(pj))p
ni−nj−(j−i)

= 1 +

pni−(j−i)∑
k=1

βkτpj (k)tk

is a polynomial with coefficients in CT(pi;X)⊗ Z(p).
Moreover, the p-adic valuation of the coefficient βk equals

vp(βk) =

{
ni − nj − (j − i)− vp(k/pnj ) if k = 0 (mod pnj )

ni − nj − (j − i) if k 6= 0 (mod pnj ).
13



Proof. We identify K(X) with its image in K(XL) for a splitting field L of X. We write ξ for the

class of O(−1) in K(XL). Then the class of ζX(pi) is identified with pniξp
i

and the class of ζX(pj)

is identified with pnjξp
j
. We have

λp
j−i

(pniξp
i
) =

(
pni

pj−i

)
ξp

j
.

It follows that

ct(p
ni−(j−i)ξp

j
) = ct(p

ni−(j−i)−nj (pnjξp
j
))

= ct(ζX(pj))p
ni−nj−(j−i)

= (1 + τpj (1)t+ · · ·+ τpj (p
nj )tp

nj
)p

ni−nj−(j−i)

is a polynomial with coefficients contained in CT(pi;X)⊗ Z(p). This proves the first claim.
To prove the second claim, we write

= (1 + τpj (1)t+ · · ·+ τpj (p
nj )tp

nj
)p

ni−nj−(j−i)

= 1 +

pni−(j−i)∑
k=1

βkτpj (k)tk

using Proposition A.8. Explicitly there are equalities

βkτpj (k) =
∑
I

(
pni−(j−i)−nj

I

)
τ Ipj

where the sum runs over tuples I = (a0, ..., apnj ) such that a0 + · · · + apnj = pni−(j−i)−nj and
a1 + 2a2 + · · ·+ pnjapnj = k; here we’re using the notation(

pni−(j−i)−nj

I

)
=

(
pni−(j−i)−nj

a0, ..., apnj

)
=
pni−(j−i)−nj !

a0! · · · apnj !
and τ Ipj = τpj (0)a0τpj (1)a1 · · · τpj (pnj )

a
p
nj

for a tuple I = (a0, ..., apnj ). Thus

vp(βk) = vp

(∑
I

(
pni−(j−i)−nj

I

)
αI

)
≥ min

{
vp

((
pni−(j−i)−nj

I

)
αI

)}
where αI is the coefficient in τ I

pj
= αIτpj (k) from Corollary A.11. In fact, the above inequality

is an equality if there is a unique minimum over the given tuples I. The p-adic valuation of any

coefficient
(
pni−(j−i)−nj

I

)
αI can be found using Corollary A.11 and Lemma B.2; the p-adic valuation

of any coefficient
(
pni−(j−i)−nj

I

)
αI can also be bounded below using Corollary A.11 and Lemma B.3.

With this bound, one can show there is a unique minimum among the vp(
(
pni−(j−i)−nj

I

)
αI): set

s = ni − (j − i) and r = nj in Lemma B.4. Finally, using Lemma B.2 to compute the valuation
explicitly and using Lemma B.5, setting s = ni − (j − i) and r = nj , shows the p-adic valuation of
βk is as claimed. �

The lemma above provides a collection of numbers βk with βkCTk(pj ;X) ⊂ CTk(1;X). Using
a technique developed in [Kar17a], we can reduce the size of the βj further. We assume A is a
division algebra in the following as this is the only case we will need.

Corollary A.13. Let A be a division algebra with ind(A) = pn and rBeh(A) = (n0, ..., nm). Let X
be the Severi-Brauer variety of A. Pick an integer 0 ≤ j ≤ m, and let 0 ≤ i ≤ pn − 1 be a second
integer.
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There exists a number αi in Z(p) so that αiτpj (i) is contained in CT(1;X)⊗Z(p). Moreover, the
p-adic valuation of the αi we find equals

vp(αi) =


n− j − nj if 1 ≤ i ≤ pnj

n− j − nj − blogp(i/p
nj )c if pnj < i ≤ pn−j

0 otherwise.

Proof. Let L be a maximal subfield of A, of degree pn over the base, and let N be the image of
the pushforward π∗ : CH(XL) ⊗ Z(p) → CH(X) ⊗ Z(p) along the projection π : XL → X. By
[Kar17a, Proposition 3.5], the image N is contained in CT(1;X)⊗Z(p). Recall also the pullback π∗

followed by the pushforward π∗ is multiplication by pn, the degree of L over the base. The proof of
the corollary mimics that of [Kar17a, Proposition 3.12]; the idea of the proof is to use the explicit
bounds of Lemma A.12 and the projection formula to get the result for any i. Note that the claim
is trivial for j = 0 (or we can just set αi = 1 in this case) so, throughout the proof, it’s safe to
assume j > 0.

We first show, for i ≤ pn−j and using βi for the coefficient such that βiCTi(pj ;X) ⊂ CTi(1;X)

found in Lemma A.12, that pvp(βi)τpj (i) is in the image of the map π∗. Write i = s0p
nj + s1 with

0 ≤ s1 < pnj . The image of τpj (i) in CH(XL)⊗ Z(p) is equal, up to prime-to-p parts, to

π∗(τpj (i)) =

{
pijhi if s1 = 0

pij+nj−vp(s1)hi if s1 > 0.

By Lemma A.12, the multiple βiτpj (i) has image, up to prime-to-p parts,

π∗(βiτpj (i)) = pn+(i−1)j−vp(i)hi

regardless of s1. Thus,

pvp(βi)τpj (i) =
1

pn
π∗π

∗(pvp(βi)τpj (i)) = π∗(
1

pn
(π∗(pvp(βi)τpj (i)))) = π∗(p

(i−1)j−vp(i)hi).

Since (i− 1)j − vp(i) ≥ 0, we find pvp(βi)τpj (i) is in N as claimed.
Now let i be an integer with 1 ≤ i ≤ pn − 1 and set ` = blogp(i/p

nj )c. To get the bounds on the
p-adic valuation in the corollary statement, we work in cases. We first assume ` ≥ n − j − nj or
equivalently i ≥ pn−j . By the above and Lemma A.12, we can find an element x of CH(XL) with

π∗(x) = τpj (p
n−j).

Set k = i− pn−j . Then, using (2) and (3) of Corollary A.11,

τpj (i) = τpj (p
nj )n−j−njτpj (k) = τpj (p

n−j)τpj (k) = π∗(x)τpj (k) = π∗(xπ
∗(τpj (k))).

By [Kar17a, Proposition 3.5], it follows τpj (i) is contained in N ⊂ CT(1;X)⊗Z(p) for all i ≥ pn−j .
For the other i, we act similarly. If pnj < i ≤ pn−j then set k = i − pnj+`. Then there is a

(different) element x with π∗(x) = prτpj (p
`+nj ) where r = vp(βp`+nj ). Then

prτpj (i) = prτpj (p
nj )`τpj (k) = prτpj (p

`+nj )τpj (k) = π∗(x)τpj (k) = π∗(xπ
∗(τpj (k)))

and the claim follows as before.
For the remaining i, when i ≤ pnj , the claim is actually immediate from Lemma A.12. �

We can do better still if we multiply the classes τ1(i) and τpj (k) for some integers i, k ≥ 0.

Corollary A.14. Let A be a division algebra with ind(A) = pn and rBeh(A) = (n0, ..., nm). Let
X be the Severi-Brauer variety of A. Pick an integer 0 ≤ j ≤ m, and let 1 ≤ i, k ≤ pn − 1 be two
integers with i+ k ≤ pn − 1.
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There exists a number βi,k in Z(p) so that βi,kτ1(i)τpj (k) is contained in CT(1;X)⊗Z(p). More-
over, the p-adic valuation of the βi,k we find equals

vp(βi,k) =


max{vp(i)− j − nj , 0} if 1 ≤ k ≤ pnj

max{vp(i)− j − nj − blogp(k/p
nj )c, 0} if pnj < k ≤ pn−j

0 otherwise.

Proof. The proof is the same as Corollary A.13 except that we use the equality, up to prime-to-p
parts,

π∗(βkτ1(i)τpj (k)) = pn+(k−1)j−vp(k)+n−vp(i)hi+k

to find pvp(βi,k)τ1(i)τpj (k) is contained in N . �

As an application, the above can be used to settle the particular case of Conjecture 1.1 when X
is the Severi-Brauer variety of an algebra A with level 1:

Theorem A.15. Let A be a central simple k-algebra of level 1 and let X be the Severi-Brauer vari-
ety of A. Assume CH(X) is generated by Chern classes. Then the K-theory coniveau epimorphism
CH(X)→ grτG(X) is an isomorphism.

Proof. It’s sufficient to show the claim when A is a division algebra of index pn. In this case
the kernel of the epimorphism CH(X) → grτG(X) is p-primary-torsion so we can work with Z(p)

coefficients throughout the proof. Let L be a splitting field for A. Since CT(1;X)⊗Z(p) is p-torsion
free, the composition

CT(1;X)⊗ Z(p) → CH(X)⊗ Z(p) → grτG(X)⊗ Z(p)

is injective; we denote by C the image of this composition. We have an inequality

(in) [CH(X)⊗ Z(p) : CT(1;X)⊗ Z(p)] ≥ [grτG(X)⊗ Z(p) : C].

We’re going to use the bounds from Corollary A.14 to get an upper bound on the left of (in). We’ll
also bound the right of (in), by computing

[grτG(X)⊗ Z(p) : C] =
[grτG(XL) : C]

[K(XL) : K(X)]

precisely; the equality of the ratio of these indices can be found in [Kar17a, proof of Theorem 3.1].
The proof will be completed once we show these two bounds are equal.

To get an upper bound on the left of (in), we sum the maximums of the p-adic valuations occurring
in Corollaries A.13 and A.14. Plainly said, we compute an upper bound on p-adic valuations of
the orders of the elements τ1(i)τpr(k), where r is the (unique since A has level 1) smallest positive

integer with vp(ind(A⊗p
r
)) < vp(ind(A⊗p

r−1
)) − 1, in the group CH(X)/CT(1;X). Note that, by

Proposition A.5 and Proposition A.8 the elements τ1(i)τpr(k) are exactly the generators of this
quotient group so that by computing an upper bound on their orders and raising p to this upper
bound, we also compute an upper bound on the index in the left of (in). Once we have this upper
bound, we’ll move on to give a lower bound for the right hand side of (in). These two bounds turn
out to be equal, showing our upper bound on the orders were in fact their precise order.
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Set nr = vp(ind(A⊗p
r
)) and ` = n−r−nr. When i = 0, we sum the contributions from Corollary

A.13,

pnr−1∑
a=1

n− r − nr +

pn−r−1∑
a=pnr

n− r − nr − blogp(a/p
nr)c

= (pnr − 1)`+

`−1∑
b=0

ϕ(pnr+b+1)(`− b)

where ϕ is the Euler totient function (we use this function to combine those terms a that have the
same value of blogp(a/p

nr)c; there are exactly ϕ(pnr+b+1) = pnr+b+1− pnr+b such terms with value

b, i.e. pnr+b,..., pnr+b+1−1). When i > 0, we only need to account for the terms with vp(i) > n− `,
(note if ` = 1 then r + nr = n− 1 and there are no terms of this kind),

pnr−1∑
b=1

vp(i)− r − nr +

pvp(i)−r−1∑
b=pnr

vp(i)− r − nr − blogp(b/p
nr)c

= (pnr − 1)(vp(i)− r − nr) +

vp(i)−r−nr−1∑
b=0

ϕ(pnr+b+1)(vp(i)− r − nr − b).

Of the integers i satisfying 1 ≤ i < pn there are ϕ(p`−1) integers i with vp(i) = n− `+ 1, there are

ϕ(p`−2) integers i with vp(i) = n− `+ 2, and so on to ϕ(p) integers i with vp(i) = n− `+ (`− 1).
Summing over all such i with vp(i) > n− ` we get

`−1∑
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)

)
.

Combining both the i = 0 and i > 0 contributions gives a definitive upper bound of

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)

)
.

To get a lower bound on the right of (in), we calculate [grτG(X)⊗Z(p) : C] precisely. Since this
index equals

[grτG(XL) : C]

[K(XL) : K(X)]
,

it’s sufficient to calculate the numerator and denominator of this fraction. The numerator depends
only on the dimension of X and equals

pn∏
i=1

(pn−vp(i)) =

n−1∏
j=1

(pn−j)ϕ(p
n−j).

The denominator depends on the reduced behavior of A and equals

pn−1∏
i=0

ind(A⊗i) =

r−1∏
j=0

(pn−j)ϕ(p
n−j)

nr+r∏
j=r

(pnr+r−j)ϕ(p
n−j)


Dividing the two gives

P =

(
nr+r∏
i=r

(p`)ϕ(p
n−i)

)(
n∏

i=nr+r+1

(pn−i)ϕ(p
n−i)

)
.
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What remains to be shown is the equality logp(P ) = S. A computation of the logarithm gives

logp(P ) = logp

(
nr+r∏
i=r

(p`)ϕ(p
n−i)

n∏
i=nr+r+1

(pn−i)ϕ(p
n−i)

)

=

nr+r∑
i=r

`ϕ(pn−i) +
n∑

i=nr+r+1

(n− i)ϕ(pn−i)

= `(pn−r − p`−1) +

n−r−nr−1∑
i=1

iϕ(pi)

= `(pn−r − p`−1) +
(`− 1)p` − `p`−1 + 1

p− 1

= `pn−r − p` − 1

p− 1
.

And by simplifying the sum S we find

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)

)

=
∑̀
a=1

ϕ(p`−a)(pnr − 1)a+
∑̀
a=1

ϕ(p`−a)
a∑
b=0

ϕ(pnr+b+1)(a− b)

=
pn−r − pnr

p− 1
− p` − 1

p− 1
+
∑̀
a=1

ϕ(p`−a)

(
pnr(pa+1 − (a+ 1)p+ a)

(p− 1)

)
=
pn−r − pnr

p− 1
− p` − 1

p− 1
+
`pn−r+1 − (`+ 1)pn−r + pnr

p− 1

= `pn−r − p` − 1

p− 1

as desired. �

Appendix B. p-adic valuations

Fix a prime p to be used throughout this appendix. For any integer n ≥ 0 we use Sp(n) to denote
the sum of the base-p digits of n. In other words, if n = a0+a1p+· · ·+arpr with 0 ≤ a0, ..., ar ≤ p−1
then Sp(n) = a0 + a1 + · · ·+ ar. This appendix proves some simple results on the function Sp and
on p-adic valuations involving this function.

Lemma B.1. Let n ≥ 0 be an integer.

(1) Sp(p
n) = 1

(2) Sp(p
na) = Sp(a) for any integer a ≥ 0

(3) Sp(p
n − 1) = n(p− 1)

(4) If 0 ≤ k ≤ n then Sp(p
n − pk) = (n− k)(p− 1)

(5) If 0 ≤ a ≤ pn then Sp(p
n − a) + Sp(a) = (n− vp(a))(p− 1) + 1

(6) If 0 ≤ a ≤ pn − 1 then Sp(p
n − 1− a) + Sp(a) = n(p− 1)

Proof. The proofs for (1)-(6) are elementary and omitted. �
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We use the notation (
n

a0, ..., ar

)
=

n!

a0! · · · ar!
.

If a0 + · · ·+ ar = n then we have the following:

Lemma B.2. Let n = a0 + · · ·+ ar with n, a0, ..., ar ≥ 0. Then

vp

((
n

a0, ..., ar

))
=

1

p− 1

((
r∑
i=0

Sp(ai)

)
− Sp(n)

)
.

Proof. See for example [Mer03, Lemma 11.2]. �

Lemma B.3. Let n > 0 be an integer. Let a0, ..., ar ≥ 0 be integers with a0 + · · ·+ ar = n. Then

vp

((
n

a0, ..., ar

))
≥ vp(n)− min

0≤i≤r
{vp(ai)}.

Proof. See for example [Mer03, Lemma 11.3]. �

Lemma B.4. Let 0 ≤ r ≤ s be integers. Fix an integer 0 < j ≤ ps. Let a0, ..., apr ≥ 0 be integers
with a0 + · · · + apr = ps−r and a1 + 2a2 + · · · + prapr = j. Write j = s0p

r + s1 with 0 ≤ s1 < pr.
Then if s1 = 0 there is an inequality

s− r − min
0≤k≤pr

{vp(ak)}+

pr∑
i=1

(r − vp(i))ai ≥ s− r − vp(s0)

and if s1 > 0 there is an inequality

s− r − min
0≤k≤pr

{vp(ak)} − (r − vp(s1)) +

pr∑
i=1

(r − vp(i))ai ≥ s− r.

If s1 = 0, then equality holds if and only if a0 = ps−r − s0 and apr = s0. If s1 > 0, then equality
holds if and only if a0 = ps−r − s0 − 1, as1 = 1, and apr = s0.

Proof. We first assume s1 = 0. If ` = min{vp(ak)} is 0, then the inequality clearly holds since
r − vp(i) ≥ 0 for all 1 ≤ i ≤ pr. If ` > 0 and r = 0, then j = a1 and j = s0. So ` is either
vp(a0) = vp(p

s − j) or vp(a1) = vp(j) = vp(s0). Since j ≤ ps, it follows ` = vp(s0) and the claim
follows with equality in this case. If ` = min{vp(ak)} > 0, then since r−vp(i) ≥ 0 for all 1 ≤ i ≤ pr,
the inequality also holds if r 6= 0 and if there is a nonzero ai with i 6= 0, pr as (r− vp(i))ai − ` ≥ 0.

Thus, to prove that the inequality holds in general (for s1 = 0), it suffices to assume ` > 0,
r > 0, and ai = 0 unless i = 0 or i = pr. Assuming this is the case, it follows from the assumption
prapr = j that apr = s0 and from the assumption a0 + apr = ps−r that a0 = ps−r − s0. Since
s0 ≤ ps−r, we also have vp(apr) ≤ s − r so that vp(a0) = vp(apr) unless apr = ps−r (in which case
vp(a0) =∞ and the claim is clear). Thus ` = vp(s0), the inequality holds, and it is even an equality
in this case.

To see a0 = ps−r − s0 and apr = s0 is the only case the inequality is an equality, one can work
through the same cases. If ` = 0 and there is equality, then vp(s0) = 0 and the large summation
must equal 0. Hence prapr = j and the claim follows. If ` > 0, then either r = 0 or r > 0. If r = 0,
the claim follows from the first paragraph. If r > 0, then either all ai with i 6= 0, pr vanish or there
is at least one 0 < i < pr with ai 6= 0. We can assume the latter case where the inequality is a
strict inequality since (r − vp(i))ai − ` ≥ ai − ` > 0.

To show the claim when s1 > 0, we work through cases similar to before. Note now r > 0 holds
always, as otherise we’d have s1 = 0. If ` = min{vp(ak)} = 0 then since r − vp(i) ≥ 0, we’re left to
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show the summation
pr∑
i=1

(r − vp(i))ai

is greater or equal r − vp(s1) ≤ r. Since s1 > 0, there is a smallest integer k with 0 ≤ k ≤ r − 1,

abpk 6= 0, and b relatively prime to p. It follows that pk divides s1 and −(r − vp(s1)) ≥ −r + k.

Since (r − vp(bp
k))abpk = (r − k)abpk ≥ (r − k) we find that the inequality holds by summing

(r − vp(bpk))abpk − (r − vp(s1)) ≥ (r − k)− (r − k) = 0.
Thus to prove the inequality holds in general, it suffices to assume ` > 0. Under our assumptions

` > 0, r > 0, and j 6= prapr we have that there exists at least one i with i 6= 0, pr such that ai 6= 0.
Let k be the smallest integer between 0 ≤ k < r such that abpk 6= 0 for some b relatively prime to

p. It follows pk divides s1 hence −(r − vp(s1)) ≥ −r + k. Now

(r − vp(bpk))abpk − r + vp(s1)− ` ≥ (r − k)p` − r + vp(s1)− `

= (r − k)(p` − 1)− `+ vp(s1)

≥ (p` − 1− `) + vp(s1)

≥ 0.

We end by showing that equality holds, assuming s1 > 0, only in the specified case (it’s clear
equality holds in this case). We first assume ` = 0. For equality to hold, we must have

pr∑
i=1

(r − vp(i))ai = r − vp(s1).

Again there is a minimal 0 ≤ k < r with abpk 6= 0 for some b relatively prime to p. We also get

that pk divides s1. It follows

(r − vp(bpk))abpk = (r − k)abpk ≥ (r − k) ≥ r − vp(s1)
must be an equality. Hence abpk = 1 and we are in the specified case.

We next assume ` > 0 and show our inequality is strict. Let k with 0 ≤ k < r be minimal with
abpk 6= 0 for some b relatively prime to p. Then

pr∑
i=1

(r − vp(i))ai ≥ (r − k)p`.

Since `+ r− vp(s1) ≤ `+ r− k it suffices to check (r− k)p` > `+ r− k holds for all (r− k), ` > 0 in
order to show this is a strict inequality in this case. But this is true since dividing by r − k yields
p` > `/(r− k) + 1; making another estimate we can show p` > `+ 1 for all ` and this is always true
for ` > 0 and p ≥ 2. �

Lemma B.5. Let 0 ≤ r ≤ s be integers. Fix an integer 1 ≤ j ≤ ps and write j = s0p
r + s1 with

0 ≤ s1 < pr.
If s1 = 0, let I = (a0, ..., apr) be the tuple with a0 = ps−r − s0, apr = s0 and ai = 0 for all other

i. Then,

vp

((
ps−r

I

))
=

1

p− 1
(Sp(a0) + Sp(apr)− Sp(ps−r)) = s− r − vp(s0).

If s1 > 0, let I = (a0, ..., apr) be the tuple with a0 = ps−r − s0 − 1, as1 = 1, apr = s0 and ai = 0
for all other i. Then,

vp

((
ps−r

I

))
=

1

p− 1
(Sp(a0) + Sp(as1) + Sp(apr)− Sp(ps−r)) = s− r.
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Proof. The first equality follows from Lemma B.2 and Lemma B.1 (1) and (5). The second equality
follows from Lemma B.2 and Lemma B.1 (1) and (6). �
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