THE PERIOD AND INDEX OF A GENERIC
GEOMETRICALLY ELLIPTIC NORMAL CURVE

EOIN MACKALL

ABSTRACT. We construct genus one curves on base extensions of
generic Severi-Brauer varieties of a given index and period which
are versal objects for families of geometrically elliptic normal curves.
We also compute the periods and indices of these curves showing
that all possible period/index combinations are possible.

CONTENTS
1. Introduction 1
2. Twisted Hilbert Schemes 3
3. Generic geometrically elliptic normal curves 7
Appendix A.  On Azumaya algebras 16
References 17

1. INTRODUCTION

In [LT58], Lang and Tate introduced the notion of the period and
index of a principal homogeneous space for an abelian variety in analog
to invariants of the same name for central simple algebras. They prove
that, here also, the period divides the index, that both invariants have
the same prime factors, and they construct examples showing some of
the possible period-index combinations that can occur.

Lichtenbaum showed in [Lic69] that for principal homogeneous spaces
under elliptic curves, the index divides the period squared. Since then,
there have been a number of constructions of genus one curves having
period n and index nm, for any m dividing n, for varying base fields.
For instance, Clark and Lacy [CL19] have proven that such curves exist
over any infinite, finitely generated field and for any n > 1.
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In this article, we show that there exists a generic, geometric such
construction of a curve of genus one with period n > 3 and index nm,
for any m dividing n, assuming that n is indivisible by the characteristic
of the base field. More precisely, we compute (in Theorem 3.6) the
period and index for the generic geometrically elliptic normal curve on
a generic Severi-Brauer variety of index n and exponent m.

Our proof has two components. First, we observe that the generic
geometrically elliptic normal curve embedded inside the generic Severi—
Brauer variety of index n and exponent m is versal among all curves
embedded as a geometrically elliptic normal curve in a Severi—Brauer
variety of degree n and exponent dividing m. More precisely, we can
realize any particular such embedded curve as a specialization of the
generic curve along a sequence of DVRs.

Second, the period and index of any geometrically elliptic normal
curve embedding in a Severi-Brauer variety of degree n and exponent
m must be bounded above by n and nm respectively. Since the period
and index can only lower under specialization, the main difficulty is in
showing that these upper bounds are also lower bounds. To do this,
we use the idea of index reduction for curves to produce a particular
example which the generic curve specializes to (Lemma 3.9).

Our construction of the generic, geometric elliptic normal curve in-
side a generic Severi—Brauer variety, along with the verification of its
properties, uses a particular Hilbert scheme of a Severi—Brauer scheme.
Conceptually, it is easier to understand this Hilbert scheme as an fppf-
descended collection of certain Hilbert schemes of projective bundles.
We explain how this descent can be accomplished in Section 2 and
we summarize the basic properties of these schemes that we will use.
This section subsumes an earlier preprint of the author titled Twisted
Hilbert schemes and division algebras. Then, in Section 3, we give our
construction of generic geometrically elliptic normal curves along with
the main results of the paper.

Notation. We use the following notation throughout:

e if k is a base field, then we write k to denote a fixed algebraic closure
of k and k® to denote the separable closure of k inside k

Conventions. We use the following conventions throughout:

e a variety is an integral scheme that is separated and of finite type
over a base field

e a curve is a proper scheme of pure dimension one that is separated
and of finite type over a base field.
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2. TWISTED HILBERT SCHEMES

Let 2 /S be a Severi-Brauer scheme of relative dimension n over a
Noetherian scheme S. Concretely, this means there exists an fppf cover
S" = {Si}ier of S and compatible isomorphisms 2, = 2" x5 S5; = Py .
We call data (.S;, €;)ier consisting of an fppf cover S’ and isomorphisms
€ : Xs, — P& a splitting of 27/ S.

Given both splitting data (S;, €;);cs for a Severi-Brauer scheme 27 /S
and a polynomial ¢(t) € Q[t], one gets Hilbert schemes Hilby (P, /S;)
and an induced fppf descent datum relative to the cover {S;};es of S.
The goal of this section is to show that this descent data is effective,
coming naturally from an S-scheme Hilb%)(% /S) which represents a
functor analogous to the usual Hilbert scheme of a projective bundle.

To start, recall from [Qui73, §8.4] that Quillen has constructed a
universal vector bundle J on the Severi-Brauer scheme 2" /S having
the following property: locally for an fppf cover S’/S splitting 2" /S,
J admits isomorphisms

Tls, = Opgi(_l)@n+1 for each S; € S’

compatible with the isomorphisms 25, = P§. of the splitting. We write
Q=J"=Hom(T,Oy) to denote the dual of J and we call Q the
Quillen bundle on the Severi-Brauer scheme 27/S.

Lemma 2.1. Suppose that S is connected and write 7 : & — S for
the structure map of Z°/S. Let F be an S-flat coherent sheaf on Z .
Then there exists a numerical polynomial ¢(t) € Q[t] and an integer N
so that the following equality holds

rk(m (F ® Q%)) = ¢(t) - k(Q™")
for all integers t > N.

Proof. Let S" = {S;}icr be an fppf cover splitting 2°/S and write
i + Zs, — S; for map coming from base change. Then, for all ¢ > 1,

there are isomorphisms
5, ® (Opg (D)%) 2w (Fls (0701,

W*(.F(X) Q®t) 5 = Wz*(f
Since 7 (Fls, (£)20HD) 22 7, (Flg, (£))2 D" the ¢(t) of the lemma is

necessarily the Hilbert polynomial of F|s, on 27, = P . O
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Definition 2.2. Let 27/S be a Severi-Brauer scheme over a base S.
Let F be an S-flat coherent sheaf on .2". For each connected component
S, C S we define the reduced Hilbert polynomial of F on S, to be the
numerical polynomial rh(t) € Q[t] guaranteed to exist by Lemma 2.1.
In other words, rhz(t) is uniquely characterized by the existence of an
integer N > 0 and equality

rk(m, (F @ Q%')|s,) = thz(t) - tk(Q%") for all ¢ > N.

If the reduced Hilbert polynomial of F on S, is equal to rhz(¢) for all
connected components S, C S, then we call rhz(t) the reduced Hilbert
polynomial of F. When F = Oy is the structure sheaf of a subscheme
V C Z we write rhy (¢) instead of rhe,, (¢).

Remark 2.3. If 27/S is a split Severi-Brauer scheme (i.e. if 27/S
is isomorphic over S with a projective bundle Pg(&) for some vector
bundle £ on §) then, for any S-flat coherent sheaf F on 2", the reduced
Hilbert polynomial rhz(¢) is just the usual Hilbert polynomial hx(t)
with respect to the line bundle Opg)(1).

Lemma 2.4. Let 27 /S be a Severi—Brauer scheme over any scheme S.
Let F be a coherent sheaf on 2. Then for every polynomial ¢(t) € Qlt]
there is a locally closed subscheme Sy C S with the property:

(f) given a morphism T — S, the pullback Fr on Zr is flat over T
with reduced Hilbert polynomial thr,.(t) = ¢(t) if and only if T — S
factors T'— Sy C S

Proof. The lemma holds fppf locally over the base S. More precisely,
let S” = {S;}icr be any fppf cover splitting 2" /S with I a finite set
and let ¢; : 25, — P be isomorphisms realizing the splitting. Write
T, =T xgS; and F; for the pullback of F to Z7,. Then for each of the
indices ¢ € I, there is a locally closed subscheme S; 4 C S; so that
F; is flat over T; with reduced Hilbert polynomial rhx, (¢) = ¢(t) if and
only if T; — S; factors T; — S; 4y C S;. Because of Remark 2.3, the
reduced Hilbert polynomial rhg,(¢) is just the Hilbert polynomial of
he,, 7, (t) and this follows from [Kol96, Theorem I.1.6] which ultimately
refers to [Mum66, Lecture 8.

To see that the lemma also holds over S, we note that it’s possible
to descend the S; 4) to a scheme Sy C S with Sy X5 S = Sie)-
Indeed, both of the schemes S; 44 X S; and Sj 4+) x5 5; are uniquely
characterized as subschemes of S; xg S; by the given property with
respect to the coherent sheaf Fi|g,x g5, = Fjls;xss;, On Zs,xgs,. Asit’s
clear that the cocycle condition on any triple product S; x g S; X g Sy is
satisfied, it follows from [Stal9, Tag 0247] that Sy exists as a scheme
over S (see also [Stal9, Tag 010X, Tag 02JR]).
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It remains to show that Sy has property (f). Both the flatness of
Fr and the computation for the reduced Hilbert polynomial rhg, (t)
can be checked fppf locally for the cover S’/S. The claim follows then
from the construction of Sy). O

For any locally Noetherian S-scheme 7', write H;/S?S(T) for the set

(1) HYA(T) = {v C Xy

V' is proper and flat over T’
and rhy () = ¢(t)

The association of 7" to H fz(t/)S(T) defines a contravariant functor from
the category of locally Noetherian S-schemes to the category of sets.
For a morphism p : 77 — T, the associated map H?Z(.t/)s(T) — H fét/)S(T’ )
sends a subscheme V' C 27 to V x7 T C Z7 where the fiber product
is taken along the morphism p.

Theorem 2.5. Let 27 /S be a Severi-Brauer scheme over a Noetherian
base scheme S. Then, for every polynomial ¢(t) € Qlt], there exists an

S-scheme Hilbg, (2°/S) which represents the functor Hfét/)s from (1).
In particular, there is a subscheme
Univf;(vt)(%/S) C Z Xg Hilbfbv(vt)(%/S)
and, for any locally Noetherian S-scheme T', there is an equality
Homs (T, Hilb{, (2/S)) = H3\(T)
where a map f: T — Hilbg(, (2/S) corresponds to the subscheme
V = Univy, (27/9) X g wgmimyy, (2/5) £ xs T

Proof. The proof is essentially the same as in [K0l96, Theorem 1.1.4].
The only change that needs to be made, taking Lemma 2.4 into account,
is that one realizes the Hilbert scheme Hilbj(,(2"/S) embedded in the
Grassmannian S-bundle % = Grg(¢(N), m.L) of rank ¢(N) quotient
bundles of the locally free 7, £, where £ = (det Q)®N/(+1) and N > 0
is an integer divisible by n + 1 such that h*(V, Oy (N)) = 0 for any
subscheme V' C P™ with Hilbert polynomial ¢(t). O

Definition 2.6. We'll call Hilbgz’t)(%/S) the Hilbert scheme of 2"/ S
that parameterizes subschemes with reduced Hilbert polynomial ¢(t).
The superscript tw is a reminder that this is a twist of one of the usual
Hilbert schemes of a projective bundle as the next remark notes.

Remark 2.7. If 27/S is split, i.e. if 27/ is a projective bundle Pg (&)
for some vector bundle £ on S, then the above theorem recovers the
usual Hilbert scheme Hilby)(Ps(€)/S). This also shows the following
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statement: if 2" /S is any Severi-Brauer scheme over a Noetherian base
scheme S, and if S’/S is an fppf cover splitting 27 /S, then there are
splitting isomorphisms

Hilbl, (2°/S) x5 S' = Hilby)(2s/S")

as claimed in the beginning of this section. Consequently, the scheme
Hilbg{, (.27/S) inherits any property of Hilbg) (2% /S’) that can be
checked fppf locally on the base, i.e. being finite-type, proper, or smooth
over S holds if it also does over S’.

Remark 2.8. Given any Severi-Brauer scheme 2°/S with structure
map 7 : Z — S, it follows from [Stal9, Tag 01VR] that £ = det Q is a
m-relatively very ample line bundle. Hence 7 is projective with respect
to £ and for any polynomial ¢(t) € Q[t] there is a usual Hilbert scheme
Hilby ) (2" /S) parametrizing flat and proper subschemes of 2~ whose
Hilbert polynomial with respect to £ is ¢(t). If 2~ has constant relative
dimension n — 1 over S, then there is an isomorphism

Hilb%, (27/S) 2 Hilby(u(2/5)

where, on the right, ¢(nt) is taken with respect to L.

However, there are some benefits to the construction Hilbg‘(}t)(% /S).
(For example, the twisted and usual Hilbert scheme are both realized
as subschemes of certain projective bundles; however, the relative codi-
mension of the twisted Hilbert scheme will always be much lower than
that of the usual one under these embeddings).

The infinitesimal theory of Hilbg, (27/S) can also be checked on
an fppf cover of the base, so we get the following corollary using the
fact that the scheme Hilbyy, (2/S) is fppf locally, e.g. on a cover S'/S
splitting 2/, isomorphic to Hilby) (P /5").

Corollary 2.9. Let 27 /S be a Severi—Brauer scheme over S. Lets € S
be a point, let F' be a field, and let p : Spec(F) — s be a morphism.
Let V. C ZF be a subscheme with ideal sheaf Iy, and reduced Hilbert
polynomial thy (t) = ¢(t). Then the following are true:

(1) The Zariski tangent space of Hilbf;(vt)(%F/F) at the F-point given
by V' wvia Theorem 2.5 is naturally isomorphic to

HOH’lO%F (Iv, Ov) = HOHIOV (Iv/z-?/, Ov)

(2) The dimension of every irreducible component of Hilb%)(%p/F)
at the F-point defined by V s at least

dimFHOHl(/)%F (Iv, Ov) — dimpExt}Q%F (Iv, OV) + dlmsS


https://stacks.math.columbia.edu/tag/01VR

GENERIC GEOMETRICALLY ELLIPTIC NORMAL CURVES 7

(8) If V-.C ZF is (fopf) locally unobstructed, then the dimension of
every irreducible component of Hilby, (2°/S) at any point in the
image of the point defined by V is at least

dimzHome,, (Zy /%, Oy ) — dimpH (V, Hom(Zy /T, Oy )) + dim,S.

Moreover, in either of the cases (2) or (3) above, if the lower bound
given for the dimension is equal to the dimension of every irreducible
component of Hilb%)(%/S) at the point defined by V', then the map

Hilb%)(%/S) — S
s a local complete intersection morphism at that point.

Proof. This is a combination of [Kol96, Theorems 1.2.10 and 1.2.15].
See [Kol96, Definition 1.2.11] for the definition of locally unobstructed
subschemes. O

3. GENERIC GEOMETRICALLY ELLIPTIC NORMAL CURVES

From now on, we work in the following setting: we fix a base field k, a
k-central simple k-algebra A, and we let X = SB(A) be the associated
Severi-Brauer variety of A. We use the triple (d,n,m) to refer to the
degree, index, and exponent of A respectively, i.e.

d=deg(A), n=ind(A), m =exp(A).
Write
2) Uy Univiy, (X/k) — Hilb, (X/F)

for the canonical map coming from the projection. (By slight abuse
of notation, we use the same ¥y regardless of the function ¢(t) under
consideration). For each irreducible component V' C Hilby, (X/k) we
let 1y denote the generic point of V. If ¢(t) = rt + s is linear then, for
each such V, the generic fiber ¥;'(ny) is the union of a curve and a
finite number points.

Of particular interest is the following component of Hilbly (X /k) for
any integer r > 1 such that n divides r.

Definition 3.1. Let ElL.(X) C Hilb'}(X/k) denote the union of the
irreducible components V of Hilb"} (X /k) whose generic fiber ¢ (nv)
is a smooth and geometrically connected curve of genus 1.

If either dim(X) = 2 and r = 3, or if dim(X) > 3 and r > 3 is an
arbitrary, then the scheme Ell,.(X) is nonempty.

Proposition 3.2. Suppose A is a central simple k-algebra of degree d
and of index n. Then the following are true:



8 EOIN MACKALL

(1) Elly(X) is geometrically irreducible with dim(Elly(X)) = d?;

(2) if A has division and either A is cyclic or, if A contains a mazimal
subfield F C A whose Galois closure E/k is a Galois extension of
degree 2n with dihedral Galois group, then ElL,(X)(k) # 0.

Proof. We first prove (2). In either case, let x be a point of X with k(x)
either a cyclic Galois extension E/k of k of degree n (in the first case)
or a maximal subfield k(x) C A with Galois closure E/k a dihedral
Galois extension of degree 2n (in the second case). The field E splits
X and k(x) @, E = E®" either way. Let H C Gal(E/k) be a cyclic
subgroup of order n. Pick an E-rational point p in xg and let L be the
line through p and gp for any generator g of H.

The union of the H-translates of L forms a Gal(E/k)-orbit which
descends to a scheme V' C X defined over k. Geometrically, the scheme
V% is an n-gon of lines through the points zz. Hence rhy () = nt. We
claim the point defined by V in Hilb!} (X/k) is contained in Ell,(X).

Actually, as V4 is the scheme-theoretic union of lines we can use the
exact sequence [Stal9, Tag 0C4J]

(3) 0—= Ocup —= Oc®Op — Ocap — 0

where V; = CUD, with C a chain of n—1 lines and D a line closing the
n-gon, to compute that h'(V,Oy) = 1 and that h'(V%, Oy (1)) = 0 by
tensoring the exact sequence with Ox_(1). Since V7 has Ici singularities,
one can apply [Harl0, Proposition 29.9] to find that V; is smoothable.

More precisely, we find that Hilb"} (X/k) is smooth at the k-rational
point defined by V' C X and, over an algebraic closure, there is an
integral curve passing through both the point corresponding to Vz C X3
and the subset of Ell,,(X7) parametrizing smooth and connected curves.
In particular, the embedding V' C X defines a point of Ell,(X)(k)
completing the proof of (2).

Now we prove (1). If d = 3, then Hilb}y (X /k) is isomorphic to P.
So we can assume d > 3. Then Ell;(X) is geometrically irreducible by
[Ein86, Theorem 8]. The dimension of Ell;(X) can also be determined
geometrically. Essentially, if C' C X3 is smooth of degree d and genus
1 then one can compute

]?,O(C,Nc/xz> = d2 and h1<C>NC/XE) =0

using the normal bundle sequence (and the Euler sequence for Xy).
This shows both that dim(Ell4(X)) < d?, from Corollary 2.9 (1), and
that dim(Ell4(X)) > d?, from Corollary 2.9 (3); moreover this shows
that Ell;(X) is smooth along U. O


https://stacks.math.columbia.edu/tag/0C4J
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Remark 3.3. The proof of (2) in Proposition 3.2 above is an extension
of an argument due to Jason Starr, cf. [Stal7]. There Starr’s goal is to
use the fact that V defines a smooth k-rational point on Hilb!} (X/k)
to construct a smooth genus 1 curve on any Severi-Brauer variety X
defined over a large (also called ample) field k (e.g. a p-special field or
the fraction field of a Henselian DVR).

We can elaborate on Starr’s result in the setting of Proposition 3.2,
i.e. when A is a division k-algebra satisfying the assumptions of (2).
Indeed, the scheme Ell, (X)) is projective so we can construct a smooth
curve E with a k-rational point mapping to the k-point x associated to
the n-gon V' constructed in the proof of Proposition 3.2 (2) as follows.

Let y be any point of Ell,(X) whose associated subscheme C' C X
is a smooth geometrically connected curve of genus 1. Let I = {z,y}.
Consider the blowup Bl;(ElL, (X)) with center the points I C Ell,,(X).
Since Ell,(X) is projective, there is some embedding of the blowup
Bl;(ElL, (X)) € PM. A general linear section of the correct codimension
intersects Bl;(ElL, (X)) in a curve (smooth near x) by Bertini’s theorem
[Jou83, Théoreme 6.10 et Corollaire 6.11]. A general section of the same
codimension intersects the exceptional divisor P**~! c Bl (Ell, (X))
over x in a k-rational point and the exceptional divisor over y in some
number of points. So we can choose a section E’ C Bl;(Ell, (X)) doing
all three things at once. The normalization E of E’ is a curve with all
the stated properties.

Over a large (also called ample) field k, any irreducible curve having
a smooth k-rational point has infinitely many k-rational points. Thus
the curve E has infinitely many k-rational points and the image along
the composition of the normalization and blowdown

E — E' — Bl;(Ell,(X)) = ElL,(X)

has nontrivial intersection with the open subset of Ell,,(X) consisting
of smooth and geometrically connected genus 1 curves.

Example 3.4. If A is a cyclic division k-algebra of index n, there are
lots of field extensions F'/k where X contains a smooth geometrically
connected curve of genus 1 and where the algebra Ap has index n.
When n = p" is a power of a prime p, Remark 3.3 shows this holds
for a minimal p-special field F'/k contained in an algebraic closure & /k.
When the index n is arbitrary one can instead use the field k((¢)),
which is the fraction field of a Henselian DVR, and apply Remark 3.3.
The index remains n here since Ay specializes to A (Lemma A.1).
One can also construct “generic” examples for an arbitrary division
algebra A of index n as follows. First, one can use [RTY08] to find a
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field extension F'/k with Ap cyclic of index n and with the restriction
Br(k) — Br(F) an injection. Setting L = F(ElL,(XF)), the scheme
X, contains a smooth and geometrically connected curve of genus 1.
Then [GS17, Lemma 5.4.7] shows that the restriction Br(F) — Br(L)
is an injection and Lemma A.1 below shows that A; remains index n
(actually, both statements can be obtained from Lemma A.1). Hence
also the extension of A to E' = k(EllL,(X)) has index n and X contains
a smooth and geometrically connected curve of genus 1.

Example 3.5. Let n > 3 be an integer and fix a divisor m > 1 of n.
Set G = SL,,/jim to be the quotient of the special linear group by the
sub-group scheme of mth roots of unity. Fix a faithful representation
G — GLy for some N > 0 and let 7 : GLy — GLx/G be the
quotient. If P C G is a parabolic subgroup such that P\G = P!,
then 7 is equivariant for the right-action of P and the quotient by this
action yields a Severi-Brauer scheme my : P\GLy — GLx/G. One
can therefore consider the relative GLy/G-scheme Hilb%Y(m) and, if
n is the generic point of the (smooth and geometrically irreducible)
scheme GLy /G, we can define the relative GLy/G-scheme Ell, (7)) as
the scheme theoretic closure of Ell, (7 Xqr, /¢ 1) inside Hilb'¥ ().

The scheme Ell,(m) is proper and surjective over GLy /G and, for
any field extension F'/k and for any F-point = € (GLy/G)(F'), the fiber
Ell,(79) X@rLy/c @ contains Ell,(my Xgr,y /¢ ©) as a closed subscheme.
By [Stal9, Tag 0559], there is then an open subscheme W C GLy/G
such that for any @ € W (F) there is an equality

Eun(ﬂo) XGLN/G r = Eun(’/TO XGLN/G l‘)

If the base field k is infinite, then the relative Severi—Brauer scheme
7o is versal (cf. [GMS03, Ch. 1 §5]) in the sense that for any nonempty
open subscheme U C GLy/G, for any field extension F'/k, and for any
Severi-Brauer variety X associated to an F-central simple F-algebra
A with deg(A) = n and exp(A) dividing m, there exists an F-point = €
U(F) so that X = m; ' (U) xy@. The scheme Ell, (7o) X g1,y /¢ W and its
universal family, considered over W, is similarly versal for geometrically
elliptic normal curves on Severi-Brauer varieties.

Moreover, using Example 3.4, there exists a generic geometrically
elliptic normal curve CJ5, on the base extension (X7 ) g of the generic
Severi-Brauer variety X9 = mg'(n), where E is the function field of
the scheme Ell,, (1o X1y /an). Fix any field F/k, fix a point € W (F)
corresponding to a Severi-Brauer variety X, and fix a geometrically
elliptic normal curve C' C X. The point s, in S = Ell, (7 XaLy /¢ )
associated to the subscheme C' C X is geometrically regular. Hence
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there exists a sequence of DVRs (Ry, my), ..., (Rj(s,), Mj(s,)) satisfying
the following conditions:

(1) Frac(Ry) = F(EllL,(m)|w xx F) = F(Ell, (7 Xy F)) := E,

(2) Rz/mz = FI'&C(R7;+1)

(3) Rj(sz)/mj(sz) = F(S$)

There are also smooth Spec(R;)-schemes, gotten by base change of the
universal family, which at one end gives CJ. xp £’ and the other C.
In this way the generic geometrically elliptic normal curve specializes
to any other geometrically elliptic normal curve in any Severi-Brauer
variety defined over any field extension of k.

Recall that the period per(C) of a smooth, proper, and geometrically
integral curve C'/k is the smallest integer m > 1 so that Picgr, (k) # 0.
Equivalently, the period of C/k is the order of the element [Piclc/k]
inside the first Galois cohomology group H'(k, Picy, Jk)-

Recall also that the index ind(C') of C' is the unique positive integer
generating the image of the degree map deg : CHy(C') — Z. We have
that per(C') divides ind(C) and if the genus of C' satisfies g(C) = 1,
then ind(C') divides per(C)?, see [Lic69, Theorem 8]. In the following
theorem we keep the notation of Example 3.5 (in particular, the base
field k is assumed to be infinite).

Theorem 3.6. Let n > 3 be an integer, and let m > 1 be a divisor of
n such that n and m have the same prime factors (i.e. m | n | m™).
Assume, additionally, that n is not divisible by the characteristic of k.

Then the generic geometrically elliptic normal curve CJ5, above has
index ind(CJ5") = nm and per(CI5) = n.

Remark 3.7. Let A% be the central simple k(n)-algebra associated
to the generic Severi-Brauer variety XJ9. If n = st is a factorization
by integers s and t such that ged(t, m) = 1 and s and m share the same
prime factors, then

deg(Affﬁl) =n, ind(AZf;‘l) =s, and exp(Affgl) =m.

So the assumptions on n and m in Theorem 3.6 describe, equivalently,

exactly those cases where A9 is a division algebra.

Proof. We first deal with the case when n = m. Since CJ9' embeds
as a geometrically elliptic normal curve in a Severi—-Brauer variety of
dimension n — 1, we find per(CJ") divides n. To prove per(CJ5') = n,
it therefore suffices to show ind(C¥%') = n®.

Because of our assumption that the characteristic of the base field
k does not divide n, we can find a field extension F/k and a smooth,
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proper, and geometrically integral F-curve C' of genus ¢g(C') = 1 with
ind(C) = n? and per(C) = n. (By the remarks at the end of §4 in
[LT58], one can take F' = k((t1))((t2)) for an algebraic closure k of k).
After base extension from k to F, it follows that (CJ5") e specializes
(along a sequence of DVRs) to C' as above; here E is the function field
of Ell,,(mp x F') as before. Hence, by [Ful98, Proposition 20.3 (a)], the
index ind(C¥%) is divisible by n* which implies that it actually is n”.

When n # m, we can similarly argue by specialization. In this case,
we still have per(CJ5:) divides n since C¥5, embeds in a Severi-Brauer
variety of dimension n—1 as a geometrically elliptic normal curve. Since
n is indivisible by the characteristic of k, we can construct (see Lemma
3.8 below) a smooth, proper, and geometrically integral curve C' over a
field extension F/k with per(C') = ind(C') = n. This curve C' embeds
as a geometrically elliptic normal curve on the trivial Severi-Brauer
variety P» !, which is associated to a central simple F-algebra of degree
n and exponent dividing m trivially. Hence we can specialize (CJ") g
to C' along a sequence of DVRs; here E' = F(EllL, (7o Xy F')). As each
relative curve that appears over a DVR in this process is projective,
smooth, and has geometrically integral fibers, we can consider their
associated Picard schemes [Kle05, Theorem 4.8]. In this way we can
also specialize from Pic?cg?;;)y = Pic%g% p Xp B to Picdc/ p, for
each integer d dividing n, along a sequence of DVRs. Since the period
can only decrease when extending the base field, we can apply [Ful98,
Proposition 20.3 (a)] to show that per(C35) = n as claimed.

To compute the index of CJ%", we also use a specialization argument.
Let A be the central simple E-algebra corresponding to (Xg%')r and
let X = SB(A®™). Since (C§5)p(x) sits on the Severi-Brauer variety
(XJ9) E(x), which is associated to the division algebra Agx) of index n
and exponent m by [SVdB92, Theorem 2.1}, we can specialize (CJ5") g/
to this curve along a sequence of DVRs; E' = E(X)(Ell, (7 X E(X))).
We show in Lemma 3.9 below that the curve (CJ5')p(x) has index nm.
Thus, using [Ful98, Proposition 20.3 (a)] again, we get ind(Cg5) > nm.
However, it’s possible to see that we must also have ind(Cg5:) < nm
as we now explain.

Indeed, if B is the central simple k(n)-algebra associated to XJ%
then B has index n and exponent m. If E = k(Ell,(m)) is the given
function field, then (XJ9")g is associated to the algebra Bp which still
has index ind(Bg) = n and exponent exp(Bg) = m as the restriction
Br(k(n)) — Br(E) is an injection (see Example 3.4). If H is a divisor
of (X2 ) g of degree exp(Bg) = m then

| 08 1 H] = [ConH] = mip)

n,m
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holds in CHy((Xg5:)x) for some point p of degree ind(Bg) = n. Now
the left hand side of this equation has degree some multiple of the index
of C9" whereas the right hand side has degree nm. 0

,m

We needed two lemmas for the above proof. The first of these lemmas
constructs curves of equal period and index over an extension of k. The
proof below is adapted from [use].

Lemma 3.8. Let n > 1 be an integer not divisible by the characteristic
of k. Let k be a fized algebraic closure of k. Write F = k((t)) for the
field of formal Laurent series in t over k. Then there exists a smooth
and proper genus one curve C'/F with per(C) = ind(C) = n.

Proof. Let E/k be any elliptic curve. We claim that there exists an
element z € H'(F, Er) having exact order n. Using the correspondence
between this Galois cohomology group and the Weil-Chatelet group for
Er, the element z corresponds to an Eg-torsor C'/F having period n.
By [Lic68, Theorem 1], the curve C' also has index n.

The Kummer sequence associated to the multiplication-by-n map on
Er yields the exact sequence

(4) 00— Ep(F)/nEp(F) — HY(F, Er[n]) — H'(F, Ep)[n] =0

where Er[n] is the subgroup scheme of n-torsion points of Er. Since
n is not divisible by the characteristic of k£, and since E' is defined over
k, there exists an isomorphism of group schemes Erp[n] = (Z/nZ)%?.
Since F admits a cyclic Galois extension of degree n (i.e. F/(t/™)), there
exists an element 2z € H'(F, Er[n]) of exact order n.

We claim that the group Er(F)/nEgr(F) = 0 so that, by (4), there
exists an element x of order n as desired (the image of z, for example).
Let R = k[[t]]. The restriction Er(R) — Ep(F) is an isomorphism
due to the valuative criterion for properness, so it suffices to show that
Er(R) is n-divisible. Since E is finitely presented over k and we have
that R = lim R/(t™), there is an isomorphism

limy By (R/ (7)) 2 limg E(R/(t")) = E(R).

We'll show that Egjm)(R/(t™)) is n-divisible by induction on m.
When m = 1, the group Er(k) is divisible as E is an elliptic curve.
Now assume Egjm)(R/(t™)) is n-divisible for some m > 1. From the

restriction we get an exact sequence
0—V — Eg(R/(t"™)) — Eg(R/(t™)) — 0

with surjectivity on the right by formal smoothness. Here the kernel
V' is a k-vector space which is n-divisible since the characteristic of &



14 EOIN MACKALL

doesn’t divide n. It follows that Er(R/(t™*!)) = Egj@m+y(R/(t™1))
is n-divisible as well. 0

The second lemma provides an index reduction formula for the generic
curve C99.

Lemma 3.9. Let n > 3 be an integer not divisible by the characteristic
of the base field k and fix a divisor m > 1 of n sharing the same prime
factors asn if m > 1. Let A be the central simple E-algebra associated
to the Severi-Brauer variety (X5 )p. Let X = SB(A®™).

Then the generic geometrically elliptic normal curve CJ5' C (X9 ) e
satisfies ind ((Cgfg)E(X)) = nm. Moreover, if n/m is squarefree, then
the period of (CI5)p(x) is per ((Cgfg)E(X)) =n.

n

Proof. Let C = C¥ for the proof. Now there exists an exact sequence

(5) 0 — Pic(C x X) — Picoxx/e(E) > Br(E)

which can be obtained in multiple ways, see for example [CK12, Proof
of Theorem 2.1] or [Kle05, Remark 2.11]. Important for us are the facts
that there is an equality

Piccyx/e(E) = Pic((C x X)ES)Gal(ES/E)7

where E° is a separable closure of E, and that there is a geometric
realization of the rightmost map of (5), see e.g. [Liel7, Theorem 3.4].

Using the above equality, we can compute Picoyx/p(£) explicitly.
There is an exact sequence of Gal(E*/FE)-modules

0 — Pic(Cps) x Pic(Xpgs) = Pic((C x X)gs) - H — 0

where H = Hom((Picg(Es/Es)V,PicOCES/ES) and the leftmost nonzero
map is the pullback along the two projections, see [CTS21, §5.7.1].
Note that, as X is a Severi-Brauer variety, we have H = 0 so that

Picoxx/p(E) = (Pic(Cg:) x Pic(Xgs)) /5 = Picy x(F) x Z
where a generator in the second component is given by the class of the
line bundle O(1) on Xgs = P%;'. Note that O(1) maps to [A®™] in
the Brauer group Br(E) under the map 0.

Suppose an E-rational point in Piccyx/p(£) is given by the pair
x = (L,0(={)). Then = comes from a line bundle on C' x X only if its
image in Br(F) is trivial, i.e. if there is an equality

0=26(L) — [A®™].

Since C has an E-rational divisor of degree n?, whose image in Br(F) is
trivial, we can translate such an x to a pair where the first component
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has degree 0 < d = deg(L) < n?. We can even assume d > 1 since
= Piclc/E has no F-rational points.

Since C' has genus g(C') = 1, any line bundle representing the point
L on Picf, /p(E) is globally generated and thus defines a morphism

p:C—=P
where P is a Severi-Brauer variety with class [P] = 6(£) = [A®™] in
Br(E) by [Liel7, Theorem 3.4]. If D is a Weil divisor on P of degree
e = exp(A®™), then the zero-cycle [C N D] € CHy(C) has degree de

considered as a Weil divisor of C. Since ind(C') = n?, we must have n?
divides de. Since exp(A®™) divides n/m, we get

n
n?|de|d (—) :
m
Hence nm divides d.
Now there is a commutative box (all faces commute)

Pic(C' x X) » Pic((C' x X)p)

CH’(X) CH"(Xp:)

I\
\

PlC(CE(X)

> Pic<<CES)E5(XEs)>

\
\

Z

Z

where all vertical arrows are pushforward morphisms, all other arrows
are pullbacks, and we’ve identified

CHo(Spec(E(X))) = Z = CHy(Spec(E*(Xgs))),

see [Ful98, Proposition 1.7]. By localization [EKMO08, Corollary 57.11],
all slanted arrows are surjective and the bottom square is trivially all
isomorphisms.

If Ly is a line bundle on Cg(x) we can therefore lift it to a line bundle
on C' x X which, over the separable closure £E*/E is of the form x =
(L, O(—Y)) for aline bundle £ on Cgs with deg(£) a multiple of nm and
for some ¢ € Z. By pushing forward to Xgs and restricting to F*(Xgs),
we see that deg(Ly) = deg(L) is a multiple of nm. Conversely, taking
m-times the point of Pic¢, 5 corresponding to the embedding C' C X7
defines a degree nm line bundle on Cg(x). Hence ind(Cg(x)) = nm.

Finally, assume that n/m is squarefree. If the period of Cpx) is d,
then d divides n since the period of C' was n. If d # n, then there is a
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prime p so that v,(d) < v,(n)—1 where v, is the p-adic valuation. Now
we have d divides nm which divides d* by the period/index relations.
However, if n/m is squarefree then v,(m) > v,(n) — 1 so that

vp(nm) = vp(n) + vy(m) > 2vp(n) — 1

while v, (d?) = 2v,(d) < 2v,(n) — 2. Hence d = n. O

APPENDIX A. ON AZUMAYA ALGEBRAS

Lemma A.1. Let R be a Noetherian reqular local ring with mazimal
ideal m, residue field k = R/m, and fraction field F. Suppose that A is
an Azumaya R-algebra. Then there is an inequality ind(Ay) < ind(Ap).

Proof. We consider the R-schemes X,,, = SB,,,(A) which are étale forms
of the Grassmannian R-schemes Grg(m,n), where n is the square root
of the rank of A, and for varying m. The F and k fibers of the structure
map over R are canonically

SB,.(Ap) 2 SB,(A) xg F and SB.(4;) & SB,,.(A4) xx k,

which have an F-rational point, or a k-rational point respectively, if and
only if the index ind(Ap), or ind(A) respectively, divides m [Bla9l,
Proposition 3]. We’ll show that the assumption R is regular guarantees
that SB,,(Ax)(k) # 0 whenever SB,,(Ar)(F) # 0.

For this, we first note that R admits a sequence of discrete valuation
rings Ry, ..., R; with maximal ideals my, ..., m; for some ¢ > 0 with the
following properties:

(1) Frac(Ry) = F,

(2) Rl/mz = Fl"aC(Ri+1)

(3) Ry/my = k.

One can take a regular sequence (aq, ..., a;—1) of generators for m and
define R; = (R/(ao, ..., ai—1))@, (cf. [Stal9, Tag 00NQ, Tag 0AFS]).
Now the valuative criterion for properness [Har66, Theorem 4.7] shows

(Xm)Ri(FraC(Ri)) 7& @ — (Xm)Ri+l (Frac(Ri+1)) 7é @
One can conclude by induction. 0

Example A.2. The assumption that R is regular cannot be dropped
from the statement of Lemma A.1. Here’s an example from [Ma22, §4].
Fix a field k. Let X/k be any Severi-Brauer variety having X (k) = 0.

Let x € X be a closed point. Consider the pushout X in the cocartesian


https://stacks.math.columbia.edu/tag/00NQ
https://stacks.math.columbia.edu/tag/0AFS
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diagram below.

r — Spec(k)

[

X — X

Let & € X denote the canonical (singular) k-rational point of X and
Ox ; the local ring. If A is the central simple algebra associated to X,
then the Azumaya algebra A®y, Oy ; is split over the generic point and
nontrivial over the closed point by construction.

[Bla91]
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