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Abstract. We construct genus one curves on base extensions of
generic Severi–Brauer varieties of a given index and period which
are versal objects for families of geometrically elliptic normal curves.
We also compute the periods and indices of these curves showing
that all possible period/index combinations are possible.
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1. Introduction

In [LT58], Lang and Tate introduced the notion of the period and
index of a principal homogeneous space for an abelian variety in analog
to invariants of the same name for central simple algebras. They prove
that, here also, the period divides the index, that both invariants have
the same prime factors, and they construct examples showing some of
the possible period-index combinations that can occur.

Lichtenbaum showed in [Lic69] that for principal homogeneous spaces
under elliptic curves, the index divides the period squared. Since then,
there have been a number of constructions of genus one curves having
period n and index nm, for any m dividing n, for varying base fields.
For instance, Clark and Lacy [CL19] have proven that such curves exist
over any infinite, finitely generated field and for any n ≥ 1.
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In this article, we show that there exists a generic, geometric such
construction of a curve of genus one with period n ≥ 3 and index nm,
for anym dividing n, assuming that n is indivisible by the characteristic
of the base field. More precisely, we compute (in Theorem 3.6) the
period and index for the generic geometrically elliptic normal curve on
a generic Severi–Brauer variety of index n and exponent m.

Our proof has two components. First, we observe that the generic
geometrically elliptic normal curve embedded inside the generic Severi–
Brauer variety of index n and exponent m is versal among all curves
embedded as a geometrically elliptic normal curve in a Severi–Brauer
variety of degree n and exponent dividing m. More precisely, we can
realize any particular such embedded curve as a specialization of the
generic curve along a sequence of DVR’s.

Second, the period and index of any geometrically elliptic normal
curve embedding in a Severi–Brauer variety of degree n and exponent
m must be bounded above by n and nm respectively. Since the period
and index can only lower under specialization, the main difficulty is in
showing that these upper bounds are also lower bounds. To do this,
we use the idea of index reduction for curves to produce a particular
example which the generic curve specializes to (Lemma 3.9).

Our construction of the generic, geometric elliptic normal curve in-
side a generic Severi–Brauer variety, along with the verification of its
properties, uses a particular Hilbert scheme of a Severi–Brauer scheme.
Conceptually, it is easier to understand this Hilbert scheme as an fppf-
descended collection of certain Hilbert schemes of projective bundles.
We explain how this descent can be accomplished in Section 2 and
we summarize the basic properties of these schemes that we will use.
This section subsumes an earlier preprint of the author titled Twisted
Hilbert schemes and division algebras. Then, in Section 3, we give our
construction of generic geometrically elliptic normal curves along with
the main results of the paper.

Notation. We use the following notation throughout:

• if k is a base field, then we write k to denote a fixed algebraic closure
of k and ks to denote the separable closure of k inside k

Conventions. We use the following conventions throughout:

• a variety is an integral scheme that is separated and of finite type
over a base field
• a curve is a proper scheme of pure dimension one that is separated
and of finite type over a base field.
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2. Twisted Hilbert Schemes

Let X /S be a Severi–Brauer scheme of relative dimension n over a
Noetherian scheme S. Concretely, this means there exists an fppf cover
S ′ = {Si}i∈I of S and compatible isomorphisms XSi

= X ×S Si
∼= Pn

Si
.

We call data (Si, ϵi)i∈I consisting of an fppf cover S ′ and isomorphisms
ϵi : XSi

→ Pn
Si

a splitting of X /S.
Given both splitting data (Si, ϵi)i∈I for a Severi–Brauer scheme X /S

and a polynomial ϕ(t) ∈ Q[t], one gets Hilbert schemesHilbϕ(t)(Pn
Si
/Si)

and an induced fppf descent datum relative to the cover {Si}i∈I of S.
The goal of this section is to show that this descent data is effective,
coming naturally from an S-scheme Hilbtw

ϕ(t)(X /S) which represents a
functor analogous to the usual Hilbert scheme of a projective bundle.

To start, recall from [Qui73, §8.4] that Quillen has constructed a
universal vector bundle J on the Severi–Brauer scheme X /S having
the following property: locally for an fppf cover S ′/S splitting X /S,
J admits isomorphisms

J |Si
∼= OPn

Si
(−1)⊕n+1 for each Si ∈ S ′

compatible with the isomorphisms XSi
∼= Pn

Si
of the splitting. We write

Q = J ∨ = Hom(J ,OX ) to denote the dual of J and we call Q the
Quillen bundle on the Severi–Brauer scheme X /S.

Lemma 2.1. Suppose that S is connected and write π : X → S for
the structure map of X /S. Let F be an S-flat coherent sheaf on X .
Then there exists a numerical polynomial ϕ(t) ∈ Q[t] and an integer N
so that the following equality holds

rk(π∗(F ⊗Q⊗t)) = ϕ(t) · rk(Q⊗t)

for all integers t ≥ N .

Proof. Let S ′ = {Si}i∈I be an fppf cover splitting X /S and write
πi : XSi

→ Si for map coming from base change. Then, for all t ≥ 1,
there are isomorphisms

π∗(F ⊗Q⊗t)|Si
∼= πi∗(F|Si

⊗ (OPn
Si
(1)⊕n+1)⊗t) ∼= πi∗(F|Si

(t)⊕(n+1)t).

Since πi∗(F|Si
(t)⊕(n+1)t) ∼= πi∗(F|Si

(t))⊕(n+1)t , the ϕ(t) of the lemma is
necessarily the Hilbert polynomial of F|Si

on XSi
∼= Pn

Si
. □
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Definition 2.2. Let X /S be a Severi–Brauer scheme over a base S.
Let F be an S-flat coherent sheaf on X . For each connected component
Sρ ⊂ S we define the reduced Hilbert polynomial of F on Sρ to be the
numerical polynomial rhF(t) ∈ Q[t] guaranteed to exist by Lemma 2.1.
In other words, rhF(t) is uniquely characterized by the existence of an
integer N ≥ 0 and equality

rk(π∗(F ⊗Q⊗t)|Sρ) = rhF(t) · rk(Q⊗t) for all t ≥ N .

If the reduced Hilbert polynomial of F on Sρ is equal to rhF(t) for all
connected components Sρ ⊂ S, then we call rhF(t) the reduced Hilbert
polynomial of F . When F = OV is the structure sheaf of a subscheme
V ⊂X we write rhV (t) instead of rhOV

(t).

Remark 2.3. If X /S is a split Severi–Brauer scheme (i.e. if X /S
is isomorphic over S with a projective bundle PS(E) for some vector
bundle E on S) then, for any S-flat coherent sheaf F on X , the reduced
Hilbert polynomial rhF(t) is just the usual Hilbert polynomial hF(t)
with respect to the line bundle OPS(E)(1).

Lemma 2.4. Let X /S be a Severi–Brauer scheme over any scheme S.
Let F be a coherent sheaf on X . Then for every polynomial ϕ(t) ∈ Q[t]
there is a locally closed subscheme Sϕ(t) ⊂ S with the property:

(f) given a morphism T → S, the pullback FT on XT is flat over T
with reduced Hilbert polynomial rhFT

(t) = ϕ(t) if and only if T → S
factors T → Sϕ(t) ⊂ S.

Proof. The lemma holds fppf locally over the base S. More precisely,
let S ′ = {Si}i∈I be any fppf cover splitting X /S with I a finite set
and let ϵi : XSi

→ Pn
Si

be isomorphisms realizing the splitting. Write
Ti = T ×S Si and Fi for the pullback of F to XTi

. Then for each of the
indices i ∈ I, there is a locally closed subscheme Si,ϕ(t) ⊂ Si so that
Fi is flat over Ti with reduced Hilbert polynomial rhFi

(t) = ϕ(t) if and
only if Ti → Si factors Ti → Si,ϕ(t) ⊂ Si. Because of Remark 2.3, the
reduced Hilbert polynomial rhFi

(t) is just the Hilbert polynomial of
hϵi∗Fi

(t) and this follows from [Kol96, Theorem I.1.6] which ultimately
refers to [Mum66, Lecture 8].
To see that the lemma also holds over S, we note that it’s possible

to descend the Si,ϕ(t) to a scheme Sϕ(t) ⊂ S with Sϕ(t) ×S Si = Si,ϕ(t).
Indeed, both of the schemes Si,ϕ(t) ×S Sj and Sj,ϕ(t) ×S Si are uniquely
characterized as subschemes of Si ×S Sj by the given property with
respect to the coherent sheaf Fi|Si×SSj

∼= Fj|Si×SSj
on XSi×SSj

. As it’s
clear that the cocycle condition on any triple product Si×S Sj×S Sk is
satisfied, it follows from [Sta19, Tag 0247] that Sϕ(t) exists as a scheme
over S (see also [Sta19, Tag 01OX,Tag 02JR]).

https://stacks.math.columbia.edu/tag/0247
https://stacks.math.columbia.edu/tag/01OX
https://stacks.math.columbia.edu/tag/02JR
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It remains to show that Sϕ(t) has property (f). Both the flatness of
FT and the computation for the reduced Hilbert polynomial rhFT

(t)
can be checked fppf locally for the cover S ′/S. The claim follows then
from the construction of Sϕ(t). □

For any locally Noetherian S-scheme T , write H
ϕ(t)
X /S(T ) for the set

(1) H
ϕ(t)
X /S(T ) :=

{
V ⊂XT

∣∣∣∣ V is proper and flat over T
and rhV (t) = ϕ(t)

}
.

The association of T to H
ϕ(t)
X /S(T ) defines a contravariant functor from

the category of locally Noetherian S-schemes to the category of sets.

For a morphism ρ : T ′ → T , the associated map H
ϕ(t)
X /S(T )→ H

ϕ(t)
X /S(T

′)

sends a subscheme V ⊂XT to V ×T T
′ ⊂XT ′ where the fiber product

is taken along the morphism ρ.

Theorem 2.5. Let X /S be a Severi–Brauer scheme over a Noetherian
base scheme S. Then, for every polynomial ϕ(t) ∈ Q[t], there exists an

S-scheme Hilbtw
ϕ(t)(X /S) which represents the functor H

ϕ(t)
X /S from (1).

In particular, there is a subscheme

Univtw
ϕ(t)(X /S) ⊂X ×S Hilbtw

ϕ(t)(X /S)

and, for any locally Noetherian S-scheme T , there is an equality

HomS(T,Hilbtw
ϕ(t)(X /S)) = H

ϕ(t)
X /S(T )

where a map f : T → Hilbtw
ϕ(t)(X /S) corresponds to the subscheme

V ∼= Univtw
ϕ(t)(X /S)×X ×SHilbtw

ϕ(t)(X /S) X ×S T.

Proof. The proof is essentially the same as in [Kol96, Theorem I.1.4].
The only change that needs to be made, taking Lemma 2.4 into account,
is that one realizes the Hilbert scheme Hilbtw

ϕ(t)(X /S) embedded in the
Grassmannian S-bundle Y = GrS(ϕ(N), π∗L) of rank ϕ(N) quotient
bundles of the locally free π∗L, where L = (detQ)⊗N/(n+1) and N > 0
is an integer divisible by n + 1 such that hi(V,OV (N)) = 0 for any
subscheme V ⊂ Pn with Hilbert polynomial ϕ(t). □

Definition 2.6. We’ll call Hilbtw
ϕ(t)(X /S) the Hilbert scheme of X /S

that parameterizes subschemes with reduced Hilbert polynomial ϕ(t).
The superscript tw is a reminder that this is a twist of one of the usual
Hilbert schemes of a projective bundle as the next remark notes.

Remark 2.7. If X /S is split, i.e. if X /S is a projective bundle PS(E)
for some vector bundle E on S, then the above theorem recovers the
usual Hilbert scheme Hilbϕ(t)(PS(E)/S). This also shows the following
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statement: if X /S is any Severi–Brauer scheme over a Noetherian base
scheme S, and if S ′/S is an fppf cover splitting X /S, then there are
splitting isomorphisms

Hilbtw
ϕ(t)(X /S)×S S

′ ∼= Hilbϕ(t)(XS′/S ′)

as claimed in the beginning of this section. Consequently, the scheme
Hilbtw

ϕ(t)(X /S) inherits any property of Hilbϕ(t)(XS′/S ′) that can be
checked fppf locally on the base, i.e. being finite-type, proper, or smooth
over S holds if it also does over S ′.

Remark 2.8. Given any Severi–Brauer scheme X /S with structure
map π : X → S, it follows from [Sta19, Tag 01VR] that L = detQ is a
π-relatively very ample line bundle. Hence π is projective with respect
to L and for any polynomial ϕ(t) ∈ Q[t] there is a usual Hilbert scheme
Hilbϕ(t)(X /S) parametrizing flat and proper subschemes of X whose
Hilbert polynomial with respect to L is ϕ(t). If X has constant relative
dimension n− 1 over S, then there is an isomorphism

Hilbtw
ϕ(t)(X /S) ∼= Hilbϕ(nt)(X /S)

where, on the right, ϕ(nt) is taken with respect to L.
However, there are some benefits to the construction Hilbtw

ϕ(t)(X /S).
(For example, the twisted and usual Hilbert scheme are both realized
as subschemes of certain projective bundles; however, the relative codi-
mension of the twisted Hilbert scheme will always be much lower than
that of the usual one under these embeddings).

The infinitesimal theory of Hilbtw
ϕ(t)(X /S) can also be checked on

an fppf cover of the base, so we get the following corollary using the
fact that the scheme Hilbtw

ϕ(t)(X /S) is fppf locally, e.g. on a cover S ′/S
splitting X /S, isomorphic to Hilbϕ(t)(Pn

S′/S ′).

Corollary 2.9. Let X /S be a Severi–Brauer scheme over S. Let s ∈ S
be a point, let F be a field, and let p : Spec(F ) → s be a morphism.
Let V ⊂ XF be a subscheme with ideal sheaf IV and reduced Hilbert
polynomial rhV (t) = ϕ(t). Then the following are true:

(1) The Zariski tangent space of Hilbtw
ϕ(t)(XF/F ) at the F -point given

by V via Theorem 2.5 is naturally isomorphic to

HomOXF
(IV ,OV ) = HomOV

(IV /I2V ,OV ).

(2) The dimension of every irreducible component of Hilbtw
ϕ(t)(XF/F )

at the F -point defined by V is at least

dimFHomOXF
(IV ,OV )− dimFExt

1
OXF

(IV ,OV ) + dimsS.

https://stacks.math.columbia.edu/tag/01VR
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(3) If V ⊂ XF is (fppf) locally unobstructed, then the dimension of
every irreducible component of Hilbtw

ϕ(t)(X /S) at any point in the
image of the point defined by V is at least

dimFHomOV
(IV /I2V ,OV )− dimFH

1(V,Hom(IV /I2V ,OV )) + dimsS.

Moreover, in either of the cases (2) or (3) above, if the lower bound
given for the dimension is equal to the dimension of every irreducible
component of Hilbtw

ϕ(t)(X /S) at the point defined by V , then the map

Hilbtw
ϕ(t)(X /S)→ S

is a local complete intersection morphism at that point.

Proof. This is a combination of [Kol96, Theorems I.2.10 and I.2.15].
See [Kol96, Definition I.2.11] for the definition of locally unobstructed
subschemes. □

3. Generic geometrically elliptic normal curves

From now on, we work in the following setting: we fix a base field k, a
k-central simple k-algebra A, and we let X = SB(A) be the associated
Severi–Brauer variety of A. We use the triple (d, n,m) to refer to the
degree, index, and exponent of A respectively, i.e.

d = deg(A), n = ind(A), m = exp(A).

Write

(2) ψX : Univtw
ϕ(t)(X/k)→ Hilbtw

ϕ(t)(X/k)

for the canonical map coming from the projection. (By slight abuse
of notation, we use the same ψX regardless of the function ϕ(t) under
consideration). For each irreducible component V ⊂ Hilbtw

ϕ(t)(X/k) we
let ηV denote the generic point of V . If ϕ(t) = rt+ s is linear then, for
each such V , the generic fiber ψ−1

X (ηV ) is the union of a curve and a
finite number points.

Of particular interest is the following component of Hilbtw
rt (X/k) for

any integer r ≥ 1 such that n divides r.

Definition 3.1. Let Ellr(X) ⊂ Hilbtw
rt (X/k) denote the union of the

irreducible components V of Hilbtw
rt (X/k) whose generic fiber ψ

−1
X (ηV )

is a smooth and geometrically connected curve of genus 1.

If either dim(X) = 2 and r = 3, or if dim(X) ≥ 3 and r ≥ 3 is an
arbitrary, then the scheme Ellr(X) is nonempty.

Proposition 3.2. Suppose A is a central simple k-algebra of degree d
and of index n. Then the following are true:
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(1) Elld(X) is geometrically irreducible with dim(Elld(X)) = d2;
(2) if A has division and either A is cyclic or, if A contains a maximal

subfield F ⊂ A whose Galois closure E/k is a Galois extension of
degree 2n with dihedral Galois group, then Elln(X)(k) ̸= ∅.

Proof. We first prove (2). In either case, let x be a point of X with k(x)
either a cyclic Galois extension E/k of k of degree n (in the first case)
or a maximal subfield k(x) ⊂ A with Galois closure E/k a dihedral
Galois extension of degree 2n (in the second case). The field E splits
X and k(x) ⊗k E ∼= E⊕n either way. Let H ⊂ Gal(E/k) be a cyclic
subgroup of order n. Pick an E-rational point p in xE and let L be the
line through p and gp for any generator g of H.

The union of the H-translates of L forms a Gal(E/k)-orbit which
descends to a scheme V ⊂ X defined over k. Geometrically, the scheme
Vk is an n-gon of lines through the points xk. Hence rhV (t) = nt. We
claim the point defined by V in Hilbtw

nt (X/k) is contained in Elln(X).
Actually, as Vk is the scheme-theoretic union of lines we can use the

exact sequence [Sta19, Tag 0C4J]

(3) 0→ OC∪D → OC ⊕OD → OC∩D → 0

where Vk = C∪D, with C a chain of n−1 lines and D a line closing the
n-gon, to compute that h1(V,OV ) = 1 and that h1(Vk,OVk

(1)) = 0 by
tensoring the exact sequence withOXk

(1). Since Vk has lci singularities,
one can apply [Har10, Proposition 29.9] to find that Vk is smoothable.

More precisely, we find that Hilbtw
nt (X/k) is smooth at the k-rational

point defined by V ⊂ X and, over an algebraic closure, there is an
integral curve passing through both the point corresponding to Vk ⊂ Xk

and the subset of Elln(Xk) parametrizing smooth and connected curves.
In particular, the embedding V ⊂ X defines a point of Elln(X)(k)
completing the proof of (2).

Now we prove (1). If d = 3, then Hilbtw
3t (X/k) is isomorphic to P9.

So we can assume d > 3. Then Elld(X) is geometrically irreducible by
[Ein86, Theorem 8]. The dimension of Elld(X) can also be determined
geometrically. Essentially, if C ⊂ Xk is smooth of degree d and genus
1 then one can compute

h0(C,NC/Xk
) = d2 and h1(C,NC/Xk

) = 0

using the normal bundle sequence (and the Euler sequence for Xk).
This shows both that dim(Elld(X)) ≤ d2, from Corollary 2.9 (1), and
that dim(Elld(X)) ≥ d2, from Corollary 2.9 (3); moreover this shows
that Elld(X) is smooth along U . □

https://stacks.math.columbia.edu/tag/0C4J
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Remark 3.3. The proof of (2) in Proposition 3.2 above is an extension
of an argument due to Jason Starr, cf. [Sta17]. There Starr’s goal is to
use the fact that V defines a smooth k-rational point on Hilbtw

nt (X/k)
to construct a smooth genus 1 curve on any Severi–Brauer variety X
defined over a large (also called ample) field k (e.g. a p-special field or
the fraction field of a Henselian DVR).

We can elaborate on Starr’s result in the setting of Proposition 3.2,
i.e. when A is a division k-algebra satisfying the assumptions of (2).
Indeed, the scheme Elln(X) is projective so we can construct a smooth
curve E with a k-rational point mapping to the k-point x associated to
the n-gon V constructed in the proof of Proposition 3.2 (2) as follows.

Let y be any point of Elln(X) whose associated subscheme C ⊂ X
is a smooth geometrically connected curve of genus 1. Let I = {x, y}.
Consider the blowup BlI(Elln(X)) with center the points I ⊂ Elln(X).
Since Elln(X) is projective, there is some embedding of the blowup
BlI(Elln(X)) ⊂ PM . A general linear section of the correct codimension
intersects BlI(Elln(X)) in a curve (smooth near x) by Bertini’s theorem
[Jou83, Théorème 6.10 et Corollaire 6.11]. A general section of the same

codimension intersects the exceptional divisor Pn2−1 ⊂ BlI(Elln(X))
over x in a k-rational point and the exceptional divisor over y in some
number of points. So we can choose a section E ′ ⊂ BlI(Elln(X)) doing
all three things at once. The normalization E of E ′ is a curve with all
the stated properties.

Over a large (also called ample) field k, any irreducible curve having
a smooth k-rational point has infinitely many k-rational points. Thus
the curve E has infinitely many k-rational points and the image along
the composition of the normalization and blowdown

E → E ′ → BlI(Elln(X))→ Elln(X)

has nontrivial intersection with the open subset of Elln(X) consisting
of smooth and geometrically connected genus 1 curves.

Example 3.4. If A is a cyclic division k-algebra of index n, there are
lots of field extensions F/k where XF contains a smooth geometrically
connected curve of genus 1 and where the algebra AF has index n.
When n = pr is a power of a prime p, Remark 3.3 shows this holds
for a minimal p-special field F/k contained in an algebraic closure k/k.
When the index n is arbitrary one can instead use the field k((t)),
which is the fraction field of a Henselian DVR, and apply Remark 3.3.
The index remains n here since Ak((t)) specializes to A (Lemma A.1).

One can also construct “generic” examples for an arbitrary division
algebra A of index n as follows. First, one can use [RTY08] to find a
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field extension F/k with AF cyclic of index n and with the restriction
Br(k) → Br(F ) an injection. Setting L = F (Elln(XF )), the scheme
XL contains a smooth and geometrically connected curve of genus 1.
Then [GS17, Lemma 5.4.7] shows that the restriction Br(F ) → Br(L)
is an injection and Lemma A.1 below shows that AL remains index n
(actually, both statements can be obtained from Lemma A.1). Hence
also the extension of A to E = k(Elln(X)) has index n and XE contains
a smooth and geometrically connected curve of genus 1.

Example 3.5. Let n ≥ 3 be an integer and fix a divisor m ≥ 1 of n.
Set G = SLn/µm to be the quotient of the special linear group by the
sub-group scheme of mth roots of unity. Fix a faithful representation
G → GLN for some N ≫ 0 and let π : GLN → GLN/G be the
quotient. If P ⊂ G is a parabolic subgroup such that P\G ∼= Pn−1,
then π is equivariant for the right-action of P and the quotient by this
action yields a Severi–Brauer scheme π0 : P\GLN → GLN/G. One
can therefore consider the relative GLN/G-scheme Hilbtw

nt (π0) and, if
η is the generic point of the (smooth and geometrically irreducible)
scheme GLN/G, we can define the relative GLN/G-scheme Elln(π0) as
the scheme theoretic closure of Elln(π0 ×GLN/G η) inside Hilbtw

nt (π0).
The scheme Elln(π0) is proper and surjective over GLN/G and, for

any field extension F/k and for any F -point x ∈ (GLN/G)(F ), the fiber
Elln(π0) ×GLN/G x contains Elln(π0 ×GLN/G x) as a closed subscheme.
By [Sta19, Tag 0559], there is then an open subscheme W ⊂ GLN/G
such that for any x ∈ W (F ) there is an equality

Elln(π0)×GLN/G x ∼= Elln(π0 ×GLN/G x).

If the base field k is infinite, then the relative Severi–Brauer scheme
π0 is versal (cf. [GMS03, Ch. 1 §5]) in the sense that for any nonempty
open subscheme U ⊂ GLN/G, for any field extension F/k, and for any
Severi–Brauer variety X associated to an F -central simple F -algebra
A with deg(A) = n and exp(A) dividing m, there exists an F -point x ∈
U(F ) so that X ∼= π−1

0 (U)×U x. The scheme Elln(π0)×GLN/GW and its
universal family, considered overW , is similarly versal for geometrically
elliptic normal curves on Severi–Brauer varieties.

Moreover, using Example 3.4, there exists a generic geometrically
elliptic normal curve Cgen

n,m on the base extension (Xgen
n,m)E of the generic

Severi–Brauer variety Xgen
n,m = π−1

0 (η), where E is the function field of
the scheme Elln(π0×GLN/G η). Fix any field F/k, fix a point x ∈ W (F )
corresponding to a Severi–Brauer variety X, and fix a geometrically
elliptic normal curve C ⊂ X. The point sx in S = Elln(π0 ×GLN/G x)
associated to the subscheme C ⊂ X is geometrically regular. Hence

https://stacks.math.columbia.edu/tag/0559
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there exists a sequence of DVRs (R0,m0), ..., (Rj(sx),mj(sx)) satisfying
the following conditions:

(1) Frac(R0) = F (Elln(π0)|W ×k F ) = F (Elln(π0 ×k F )) := E ′,
(2) Ri/mi

∼= Frac(Ri+1)
(3) Rj(sx)/mj(sx)

∼= F (sx).

There are also smooth Spec(Ri)-schemes, gotten by base change of the
universal family, which at one end gives Cgen

n,m ×E E
′ and the other C.

In this way the generic geometrically elliptic normal curve specializes
to any other geometrically elliptic normal curve in any Severi–Brauer
variety defined over any field extension of k.

Recall that the period per(C) of a smooth, proper, and geometrically
integral curve C/k is the smallest integer m ≥ 1 so that PicmC/k(k) ̸= ∅.
Equivalently, the period of C/k is the order of the element [Pic1C/k]

inside the first Galois cohomology group H1(k,Pic0C/k).
Recall also that the index ind(C) of C is the unique positive integer

generating the image of the degree map deg : CH0(C) → Z. We have
that per(C) divides ind(C) and if the genus of C satisfies g(C) = 1,
then ind(C) divides per(C)2, see [Lic69, Theorem 8]. In the following
theorem we keep the notation of Example 3.5 (in particular, the base
field k is assumed to be infinite).

Theorem 3.6. Let n ≥ 3 be an integer, and let m > 1 be a divisor of
n such that n and m have the same prime factors (i.e. m | n | m∞).
Assume, additionally, that n is not divisible by the characteristic of k.

Then the generic geometrically elliptic normal curve Cgen
n,m above has

index ind(Cgen
n,m) = nm and per(Cgen

n,m) = n.

Remark 3.7. Let Agen
n,m be the central simple k(η)-algebra associated

to the generic Severi–Brauer variety Xgen
n,m. If n = st is a factorization

by integers s and t such that gcd(t,m) = 1 and s and m share the same
prime factors, then

deg(Agen
n,m) = n, ind(Agen

n,m) = s, and exp(Agen
n,m) = m.

So the assumptions on n and m in Theorem 3.6 describe, equivalently,
exactly those cases where Agen

n,m is a division algebra.

Proof. We first deal with the case when n = m. Since Cgen
n,n embeds

as a geometrically elliptic normal curve in a Severi–Brauer variety of
dimension n− 1, we find per(Cgen

n,n ) divides n. To prove per(Cgen
n,n ) = n,

it therefore suffices to show ind(Cgen
n,n ) = n2.

Because of our assumption that the characteristic of the base field
k does not divide n, we can find a field extension F/k and a smooth,
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proper, and geometrically integral F -curve C of genus g(C) = 1 with
ind(C) = n2 and per(C) = n. (By the remarks at the end of §4 in
[LT58], one can take F = k̄((t1))((t2)) for an algebraic closure k̄ of k).
After base extension from k to F , it follows that (Cgen

n,n )E′ specializes
(along a sequence of DVRs) to C as above; here E ′ is the function field
of Elln(π0×k F ) as before. Hence, by [Ful98, Proposition 20.3 (a)], the
index ind(Cgen

n,n ) is divisible by n2 which implies that it actually is n2.
When n ̸= m, we can similarly argue by specialization. In this case,

we still have per(Cgen
n,m) divides n since Cgen

n,m embeds in a Severi–Brauer
variety of dimension n−1 as a geometrically elliptic normal curve. Since
n is indivisible by the characteristic of k, we can construct (see Lemma
3.8 below) a smooth, proper, and geometrically integral curve C over a
field extension F/k with per(C) = ind(C) = n. This curve C embeds
as a geometrically elliptic normal curve on the trivial Severi–Brauer
variety Pn−1

F , which is associated to a central simple F -algebra of degree
n and exponent dividing m trivially. Hence we can specialize (Cgen

n,m)E′

to C along a sequence of DVRs; here E ′ = F (Elln(π0 ×k F )). As each
relative curve that appears over a DVR in this process is projective,
smooth, and has geometrically integral fibers, we can consider their
associated Picard schemes [Kle05, Theorem 4.8]. In this way we can
also specialize from Picd(Cgen

n,m)E′/E′
∼= PicdCgen

n,m/E ×E E ′ to PicdC/F , for

each integer d dividing n, along a sequence of DVRs. Since the period
can only decrease when extending the base field, we can apply [Ful98,
Proposition 20.3 (a)] to show that per(Cgen

n,m) = n as claimed.
To compute the index of Cgen

n,m, we also use a specialization argument.
Let A be the central simple E-algebra corresponding to (Xgen

n,n )E and
let X = SB(A⊗m). Since (Cgen

n,n )E(X) sits on the Severi–Brauer variety
(Xgen

n,n )E(X), which is associated to the division algebra AE(X) of index n
and exponent m by [SVdB92, Theorem 2.1], we can specialize (Cgen

n,m)E′

to this curve along a sequence of DVRs; E ′ = E(X)(Elln(π0×kE(X))).
We show in Lemma 3.9 below that the curve (Cgen

n,n )E(X) has index nm.
Thus, using [Ful98, Proposition 20.3 (a)] again, we get ind(Cgen

n,m) ≥ nm.
However, it’s possible to see that we must also have ind(Cgen

n,m) ≤ nm
as we now explain.

Indeed, if B is the central simple k(η)-algebra associated to Xgen
n,m

then B has index n and exponent m. If E = k(Elln(π0)) is the given
function field, then (Xgen

n,m)E is associated to the algebra BE which still
has index ind(BE) = n and exponent exp(BE) = m as the restriction
Br(k(η)) → Br(E) is an injection (see Example 3.4). If H is a divisor
of (Xgen

n,m)E of degree exp(BE) = m then

[Cgen
n,m ∩H] = [Cgen

n,m][H] = m[p]
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holds in CH0((X
gen
n,m)E) for some point p of degree ind(BE) = n. Now

the left hand side of this equation has degree some multiple of the index
of Cgen

n,m whereas the right hand side has degree nm. □

We needed two lemmas for the above proof. The first of these lemmas
constructs curves of equal period and index over an extension of k. The
proof below is adapted from [use].

Lemma 3.8. Let n ≥ 1 be an integer not divisible by the characteristic
of k. Let k̄ be a fixed algebraic closure of k. Write F = k̄((t)) for the
field of formal Laurent series in t over k̄. Then there exists a smooth
and proper genus one curve C/F with per(C) = ind(C) = n.

Proof. Let E/k be any elliptic curve. We claim that there exists an
element x ∈ H1(F,EF ) having exact order n. Using the correspondence
between this Galois cohomology group and the Weil–Châtelet group for
EF , the element x corresponds to an EF -torsor C/F having period n.
By [Lic68, Theorem 1], the curve C also has index n.
The Kummer sequence associated to the multiplication-by-n map on

EF yields the exact sequence

(4) 0→ EF (F )/nEF (F )→ H1(F,EF [n])→ H1(F,EF )[n]→ 0

where EF [n] is the subgroup scheme of n-torsion points of EF . Since
n is not divisible by the characteristic of k, and since E is defined over
k, there exists an isomorphism of group schemes EF [n] ∼= (Z/nZ)⊕2.
Since F admits a cyclic Galois extension of degree n (i.e. F (t1/n)), there
exists an element z ∈ H1(F,EF [n]) of exact order n.

We claim that the group EF (F )/nEF (F ) = 0 so that, by (4), there
exists an element x of order n as desired (the image of z, for example).
Let R = k̄[[t]]. The restriction ER(R) → EF (F ) is an isomorphism
due to the valuative criterion for properness, so it suffices to show that
ER(R) is n-divisible. Since E is finitely presented over k and we have
that R = lim←−m

R/(tm), there is an isomorphism

lim−→
m

ER/(tm)(R/(t
m)) ∼= lim−→

m

ER(R/(t
m)) ∼= ER(R).

We’ll show that ER/(tm)(R/(t
m)) is n-divisible by induction on m.

When m = 1, the group Ek̄(k̄) is divisible as E is an elliptic curve.
Now assume ER/(tm)(R/(t

m)) is n-divisible for some m ≥ 1. From the
restriction we get an exact sequence

0→ V → ER(R/(t
m+1))→ ER(R/(t

m))→ 0

with surjectivity on the right by formal smoothness. Here the kernel
V is a k̄-vector space which is n-divisible since the characteristic of k
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doesn’t divide n. It follows that ER(R/(t
m+1)) = ER/(tm+1)(R/(t

m+1))
is n-divisible as well. □

The second lemma provides an index reduction formula for the generic
curve Cgen

n,n .

Lemma 3.9. Let n ≥ 3 be an integer not divisible by the characteristic
of the base field k and fix a divisor m ≥ 1 of n sharing the same prime
factors as n if m > 1. Let A be the central simple E-algebra associated
to the Severi–Brauer variety (Xgen

n,n )E. Let X = SB(A⊗m).
Then the generic geometrically elliptic normal curve Cgen

n,n ⊂ (Xgen
n,n )E

satisfies ind
(
(Cgen

n,n )E(X)

)
= nm. Moreover, if n/m is squarefree, then

the period of (Cgen
n,n )E(X) is per

(
(Cgen

n,n )E(X)

)
= n.

Proof. Let C = Cgen
n,n for the proof. Now there exists an exact sequence

(5) 0→ Pic(C ×X)→ PicC×X/E(E)
δ−→ Br(E)

which can be obtained in multiple ways, see for example [CK12, Proof
of Theorem 2.1] or [Kle05, Remark 2.11]. Important for us are the facts
that there is an equality

PicC×X/E(E) = Pic((C ×X)Es)Gal(Es/E),

where Es is a separable closure of E, and that there is a geometric
realization of the rightmost map of (5), see e.g. [Lie17, Theorem 3.4].

Using the above equality, we can compute PicC×X/E(E) explicitly.
There is an exact sequence of Gal(Es/E)-modules

0→ Pic(CEs)× Pic(XEs)→ Pic((C ×X)Es)→ H → 0

where H = Hom(
(
Pic0XEs/Es

)∨
,Pic0CEs/Es) and the leftmost nonzero

map is the pullback along the two projections, see [CTS21, §5.7.1].
Note that, as X is a Severi–Brauer variety, we have H = 0 so that

PicC×X/E(E) ∼= (Pic(CEs)× Pic(XEs))Gal(Es/E) ∼= PicC/E(E)× Z

where a generator in the second component is given by the class of the
line bundle O(1) on XEs ∼= Pn−1

Es . Note that O(1) maps to [A⊗m] in
the Brauer group Br(E) under the map δ.

Suppose an E-rational point in PicC×X/E(E) is given by the pair
x = (L,O(−ℓ)). Then x comes from a line bundle on C ×X only if its
image in Br(E) is trivial, i.e. if there is an equality

0 = δ(L)− [A⊗mℓ].

Since C has an E-rational divisor of degree n2, whose image in Br(E) is
trivial, we can translate such an x to a pair where the first component
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has degree 0 < d = deg(L) ≤ n2. We can even assume d > 1 since
C ∼= Pic1C/E has no E-rational points.

Since C has genus g(C) = 1, any line bundle representing the point
L on PicdC/E(E) is globally generated and thus defines a morphism

φ : C → P

where P is a Severi–Brauer variety with class [P ] = δ(L) = [A⊗mℓ] in
Br(E) by [Lie17, Theorem 3.4]. If D is a Weil divisor on P of degree
e = exp(A⊗mℓ), then the zero-cycle [C ∩ D] ∈ CH0(C) has degree de
considered as a Weil divisor of C. Since ind(C) = n2, we must have n2

divides de. Since exp(A⊗mℓ) divides n/m, we get

n2 | de | d
( n
m

)
.

Hence nm divides d.
Now there is a commutative box (all faces commute)

Pic(C ×X) Pic((C ×X)Es)

Pic(CE(X)) Pic((CEs)Es(XEs ))

CH0(X) CH0(XEs)

Z Z

where all vertical arrows are pushforward morphisms, all other arrows
are pullbacks, and we’ve identified

CH0(Spec(E(X))) = Z = CH0(Spec(E
s(XEs))),

see [Ful98, Proposition 1.7]. By localization [EKM08, Corollary 57.11],
all slanted arrows are surjective and the bottom square is trivially all
isomorphisms.

If L0 is a line bundle on CE(X) we can therefore lift it to a line bundle
on C × X which, over the separable closure Es/E is of the form x =
(L,O(−ℓ)) for a line bundle L on CEs with deg(L) a multiple of nm and
for some ℓ ∈ Z. By pushing forward to XEs and restricting to Es(XEs),
we see that deg(L0) = deg(L) is a multiple of nm. Conversely, taking
m-times the point of PicnC/E corresponding to the embedding C ⊂ Xgen

n,n

defines a degree nm line bundle on CE(X). Hence ind(CE(X)) = nm.
Finally, assume that n/m is squarefree. If the period of CE(X) is d,

then d divides n since the period of C was n. If d ̸= n, then there is a
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prime p so that vp(d) ≤ vp(n)−1 where vp is the p-adic valuation. Now
we have d divides nm which divides d2 by the period/index relations.
However, if n/m is squarefree then vp(m) ≥ vp(n)− 1 so that

vp(nm) = vp(n) + vp(m) ≥ 2vp(n)− 1

while vp(d
2) = 2vp(d) ≤ 2vp(n)− 2. Hence d = n. □

Appendix A. On Azumaya algebras

Lemma A.1. Let R be a Noetherian regular local ring with maximal
ideal m, residue field k = R/m, and fraction field F . Suppose that A is
an Azumaya R-algebra. Then there is an inequality ind(Ak) ≤ ind(AF ).

Proof. We consider theR-schemesXm = SBm(A) which are étale forms
of the Grassmannian R-schemes GrR(m,n), where n is the square root
of the rank of A, and for varyingm. The F and k fibers of the structure
map over R are canonically

SBm(AF ) ∼= SBm(A)×R F and SBm(Ak) ∼= SBm(A)×R k,

which have an F -rational point, or a k-rational point respectively, if and
only if the index ind(AF ), or ind(Ak) respectively, divides m [Bla91,
Proposition 3]. We’ll show that the assumption R is regular guarantees
that SBm(Ak)(k) ̸= ∅ whenever SBm(AF )(F ) ̸= ∅.

For this, we first note that R admits a sequence of discrete valuation
rings R0, ..., Rt with maximal ideals m0, ...,mt for some t ≥ 0 with the
following properties:

(1) Frac(R0) = F ,
(2) Ri/mi

∼= Frac(Ri+1)
(3) Rt/mt

∼= k.

One can take a regular sequence (a0, ..., at−1) of generators for m and
define Ri = (R/(a0, ..., ai−1))(ai) (cf. [Sta19, Tag 00NQ, Tag 0AFS]).
Now the valuative criterion for properness [Har66, Theorem 4.7] shows

(Xm)Ri
(Frac(Ri)) ̸= ∅ =⇒ (Xm)Ri+1

(Frac(Ri+1)) ̸= ∅.

One can conclude by induction. □

Example A.2. The assumption that R is regular cannot be dropped
from the statement of Lemma A.1. Here’s an example from [Ma22, §4].
Fix a field k. Let X/k be any Severi–Brauer variety having X(k) = ∅.
Let x ∈ X be a closed point. Consider the pushout X̃ in the cocartesian

https://stacks.math.columbia.edu/tag/00NQ
https://stacks.math.columbia.edu/tag/0AFS
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diagram below.

x Spec(k)

X X̃

Let x̃ ∈ X̃ denote the canonical (singular) k-rational point of X̃ and
OX̃,x̃ the local ring. If A is the central simple algebra associated to X,
then the Azumaya algebra A⊗kOX̃,x̃ is split over the generic point and
nontrivial over the closed point by construction.
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