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Abstract. We present an algorithm which, for an integer n > 1
as input, outputs either a proper divisor d of n or determines that
n is prime. On the one hand, this algorithm iterates through all
integers from 2 to the square root of n, similar to trial division,
and so requires O(

√
n ·Poly(log(n))) bit operations in a worst case.

On the other hand, for composite n, this algorithm is likely to
terminate in less steps than needed in trial division.

1. Introduction

The problem of either finding an efficient factorization algorithm for
large integers or, showing such an algorithm doesn’t exist, is difficult.
The large computational cost of all currently known factorization al-
gorithms forms the basis for the security of the RSA cryptographic
primitive, which is in widespread use today. Some of the best known
algorithms for finding a proper divisor of a composite integer, e.g. the
Elliptic Curve Method [Len87] or the General Number Field Sieve, are
known to run with subexponential time complexity.

Trial division of an integer n, the process of dividing n by 2, 3, ...
until reaching a proper divisor, runs with exponential time complexity
in the number of bits of n in a worst case. For a small random integer
n, trial division is often still one of the fastest methods to factor n, due
to the speed with which division can be accomplished. However, when
the smallest prime divisor of n is large, trial division is unbearably slow
on most modern commercially available computers.

We introduce in this paper an algorithm for finding a proper divisor
of an integer n which works in a similar way to trial division. For each
integer b = 2, 3, ..., we describe a process which can potentially produce
a proper divisor of n at step b and which will certainly terminate at
a proper divisor b of n. The idea is based on Cohn’s Irreducibility
Criterion for integer polynomials. Namely, for each integer 2 ≤ b <

√
n
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we form a polynomial whose coefficients are the digits of the base b
representation of n. We explain how ideas due to Murty [RM02] show
that if this polynomial factors, then we have produced a divisor of n.

Our algorithm frequently terminates at an integer b much less than
the smallest prime factor of n. In order to analyze the effective differ-
ence between our algorithm and trial division, we introduce arithmetic
functions which essentially count the number of “factoring bases” for a
given integer. We then compare one of these functions to the standard
divisor counting function on various sets of integers. We conjecture
that this latter arithmetic functions of interest has an average order
significantly greater than the divisor function (see Conjecture 3.5 for
a precise statement) and we show that this arithmetic function is un-
bounded on the class of semiprime integers.

2. Cohn’s Irreducibility Criterion

Let n > 0 be an integer. Given a second integer b > 0, we write
n = (brbr−1 · · · b1b0)b to denote the base b representation of n, so there
is an equality

n = br · br + br−1 · br−1 + · · ·+ b1 · b+ b0

for integers 0 ≤ b0, ..., br < b.

Definition 2.1. Let Φ : N × Z>1 → Z[x] be the function defined as
follows: for any tuple (n, b) we have

Φ(n, b)(x) = brx
r + br−1x

r−1 + · · ·+ b1x+ b0

where n = (brbr−1 · · · b1b0)b is the base b representation of n.

Cohn’s Irreducibility Criterion, in its original form, is the statement
that Φ(n, 10)(x) is irreducible if n is prime. More recently, the phrase
Cohn’s Irreducibility Criterion may also refer to the following theorem,
generalizing this original statement, due to Murty [RM02, Theorem 2].

Theorem 2.2. Let n > 0 be an integer and let b ≥ 2 be a second
integer. If n is prime, then Φ(n, b)(x) is irreducible.

While the above theorem immediately implies the statement that if
Φ(n, b)(x) is reducible then n is composite, a careful reading of the
proof of the theorem actually shows the stronger statement that any
proper polynomial factor of Φ(n, b)(x) gives a proper divisor of n on
evaluation at b. Stated precisely:

Theorem 2.3. Let n > 0 be an integer and let b ≥ 2 be a second
integer. Suppose that there is a factorization

Φ(n, b)(x) = f(x)g(x) deg(f), deg(g) < deg Φ(n, b)(x)
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for integer polynomials f(x) and g(x). Then 1 < f(b) < n is a proper
divisor of n.

Proof. We explain how the results of [RM02] allow one to deduce this
result directly. Since Φ(n, b)(x) is nonnegative for any x ≥ 0 (and in
fact Φ(n, b)(x) = 0 if and only if both x = 0 and b divides n), we can
assume that both f(x) and g(x) are also nonnegative for any x ≥ 0.
Since also f(b)g(b) = Φ(n, b)(b) = n, we’re reduced to showing that an
equality f(b) = 1, for f(x) as above, is impossible.

By [RM02, Lemma 2], any root α ∈ C of Φ(n, b)(x) satisfies

|α| <
1 +

√
1 + 4(b− 1)

2
.

We can write

f(x) = c
m∏
i=1

(x− αi)

for the leading coefficient c ∈ Z and αi a subset of the roots of Φ(n, b)(x).
For any integer b > 2, we have

|αi| <
1 +

√
1 + 4(b− 1)

2
≤ b− 1

so that |b− αi| > 1. In particular, for all b > 2, this implies f(b) > 1.
For the case when b = 2, a more precise bound and a more accurate

argument is needed. In [RM02, Lemma 3] it’s shown that any root
α ∈ C of a polynomial such as Φ(n, 2)(x) satisfies Re(α) < 3/2. Thus

|f(2)| = c
m∏
i=1

|2− αi| > c
m∏
i=1

|1− αi| = |f(1)|.

But f(1) ∈ Z is positive, so |f(2)| > |f(1)| ≥ 1. □

3. An Algorithm For Integer Factorization

Theorem 2.3 suggests the following Algorithm 1 for either finding a
proper divisor of an integer n > 1 or concluding that n is prime.

For each integer 2 ≤ b < ⌊
√
n⌋, the coefficients of Φ(n, b)(x) can be

calculated using at most O(log(n)3) bit operations. Further, since the
polynomial Φ(n, b)(x) has degree ⌊logb(n)⌋, it can be decided whether
or not Φ(n, b)(x) is irreducible, and if Φ(n, b)(x) is found to be reducible
then Φ(n, b)(x) can subsequently be factored, in at mostO(Poly(log(n)))
bit operations, see [LLL82]. Thus, the simple algorithm described has
time complexity as stated in the abstract.
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Algorithm 1 A factorization algorithm for n ∈ Z and n > 1

1: function Is irreducible(f(x))
2: if f(x) is irreducible then
3: return true
4: else
5: return false
6: end if
7: end function
8:

9: function Poly factor(f(x))
10: if Is irreducible(f(x))== false then
11: return g(x) dividing f(x) with deg(g) < deg(f)
12: else
13: return f(x)
14: end if
15: end function
16:

17: for b = 2 to b = ⌊
√
n⌋ do

18: if Is irreducible(Φ(n, b)(x))==false then
19: g(x)← Poly factor(Φ(n, b)(x))
20: return g(b)
21: end if
22: end for
23: return n is prime

Corollary 3.1. The above algorithm correctly returns either a divisor
of n > 1 or returns that n is prime using at most O(

√
n ·Poly(log(n)))

bit operations.

Proof. The algorithm runs at most
√
n iterations. Each iteration uses

O(Poly(log(n))) bit operations. To see that it terminates correctly,
note that a composite integer n has a divisor d ≤

√
n and Φ(n, d)(x)

is reducible for such d. □

Remark 3.2. The algorithm above can be improved in efficiency for
the range between ⌊ 5

√
n⌋ + 1 and ⌊

√
n⌋ using explicit formulas for the

roots of such polynomials. For example, if n > 1 and b ≥ 2 are integers
such that Φ(n, b)(x) = cx2+dx+e for integers c, d, e > 0 then Φ(n, b)(x)
factors in Z if and only if both d2 − ce = z2 is a square of an integer
z ≥ 0 and if d ≡ z (mod 2).

The main interest in the above algorithm is that it often terminates
at an iterate 2 ≤ k ≤ ⌊

√
n⌋ where k is not a proper divisor of n.
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Example 3.3. Let n = 207314063849. Then

n = 207314063849 = 323131 · 641579
is a prime factorization of n. But

Φ(207314063849, 40098) = 128x2+37640x+25817 = (8x+347)(16x+11).

Evaluating at x = 40098 yields 323131 = 8(40098) + 347.

To quantify the number of successes obtained through the above
algorithm, we introduce the following arithmetic functions.

Definition 3.4. For any integer n ≥ 2, define the following set

B(n) = {b ∈ Z : 1 < b ≤ n, Φ(n, b)(x) is not primitive or is reducible}.
Then define β(n) = #B(n) to be the cardinality of this set. Similarly,
for any k ∈ N define (τ≥kβ)(n) to be the function with

(τ≥kβ)(n) = #
(
B(n) ∩ {1, ..., ⌊ k

√
n⌋}

)
.

It follows immediately from the definition that β(n) ≥ τ(n)− 1. We
include a plot, in Figure 1 below, of points (n, τ≥2β(n)) ranging over
all integers 2 ≤ n < 771055. For comparison we include a plot, Figure
2 below, of the points (n, τ(n)) for the divisor counting function τ over
the same interval of integers.

A line plot of the cumulative average for the function τ≥2β on the
integers 2 ≤ n < 771055 is given in Figure 3. The graphic is suggestive
of the following conjecture:

Conjecture 3.5. There exists constants c, ε > 0 such that the average
order of τ≥2β is given as∑

n≤x

τ≥2β(n) = cx1+ε + o(x1+ε).

We don’t know how one might go about proving Conjecture 3.5.
Instead, we focus the remainder of this paper on analyzing the behavior
of the function τ≥2β on semiprimes, i.e. integers n which factor n = pq
as a product of two primes p, q. These integers are interesting not only
due to their practical use in RSA encryption schemes but, because they
form the class of composite integers where τ takes the minimal value 4.
In contrast, Figure 4, which displays points (n, τ≥2β(n)) over a sample
of 16695 semiprimes n of size no greater than 1012, shows that τ≥2β is
very much nonconstant on semiprimes.

Heuristically, the function τ≥2β seems to take on a small value at
a semiprime n = pq whenever p and q are greatly differing in size.
Conversely, experimental evidence suggests that τ≥2β takes on a larger
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Figure 1. A plot of values for (τ≥2β)(n) for all integers
n with 2 ≤ n < 771055.

value at a semiprime n = pq whenever p and q are similar in size, p ≈ q.
In the latter case, we can make this evidence into a precise result.

Example 3.6. For the semiprime

n = 30674101 = 331 · 92671
we have τ≥2β(n) = 1 so that Φ(n, b)(x) either factors or Φ(n, b)(x) is
not primitive for 2 ≤ b <

√
n if and only if b = 331.

On the other hand, for the semiprime

m = 250000070000004899 = 500000069 · 500000071
we have τ≥2β(m) = 56706.

Theorem 3.7. Let S ⊂ N denote the set of semiprime integers. Then

sup{τ≥2β(s) : s ∈ S} =∞.

Proof. We use the fact [Zha14] that there exists an integer k > 1 and an
infinite sequence of primes p1 < p2, p3 < p4, ... satisfying the inequalities
p2i − p2i−1 < k for all integers i ≥ 1. We set ni = p2i−1p2i and we set
ji = ⌊p2i−1/2⌋+1. Note that for any integer p2i−1 > b ≥ ji+

k
2
we have

p2i = b+m2i(b) and p2i−1 = b+m2i−1(b)

for integers 1 ≤ m2i(b),m2i−1(b) < b with m2i(b)−m2i−1(b) < k.
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Figure 2. A plot of values for the divisor function τ(n)
for integers 2 ≤ n < 771055.

Figure 3. A plot of the cumulative average for the func-
tion (τ≥2β)(n) for all integers n with 2 ≤ n < 771055.

It follows from the above that there is an equality

(1)
ni = p2i−1p2i = (b+m2i−1(b))(b+m2i(b))

= b2 + (m2i−1(b) +m2i(b))b+m2i−1(b)m2i(b).
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Figure 4. A plot of values for (τ≥2β)(n) over a sample
of 16695 semiprimes less than 1012.

For any N ∈ N, we may choose i ≫ 0 sufficiently large so that for all
b with k + 1 ≤ m2i(b) < N we have

m2i−1(b) +m2i(b) < ji and m2i−1(b)m2i(b) < ji.

Hence the equation (1) yields a factorization of Φ(ni, b)(x) for all such
integers b. It follows that τ≥2β(ni) ≥ N −k−2 for i≫ 0 large enough.
Since N was arbitrary, this implies the claim. □
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