
ON THE CHOW GROUPS OF A BIQUATERNION
SEVERI–BRAUER VARIETY

EOIN MACKALL

Abstract. We provide an alternative proof that the Chow group
of 1-cycles on a Severi–Brauer variety associated to a biquaternion
division algebra is torsion-free. There are three proofs of this result
in the literature, all of which are due to Karpenko and rely on a
clever use of K-theory. The proof that we give here, by contrast, is
geometric and uses degenerations of quartic elliptic normal curves.

1. Introduction

That Chow groups of 1-cycles on a Severi–Brauer variety associated
to a biquaternion division algebra are torsion-free was first observed by
Karpenko [Kar96]. More accurately, this statement is just one corollary
of Karpenko’s analysis of the topological filtration on the Grothendieck
ring of a Severi–Brauer variety associated to a decomposable central
simple algebra whose index and exponent differ by a squarefree factor.
There Karpenko showed that the entire graded ring associated to the
topological filtration was torsion-free for these varieties; the claim that
these Chow groups are torsion-free then follows from the Grothendieck-
Riemann-Roch without denominators comparing the Chow ring with
this graded ring [Ful98, Example 15.3.6].

The computation of these Chow groups, showing in particular that
they are torsion-free, has appeared as a consequence of more general
results twice since Karpenko’s work in [Kar96]. It appeared next as a
consequence of the results of [Kar98], which generalize and simplify the
theorems of [Kar95], on the topological filtration of the Grothendieck
ring of a Severi–Brauer variety associated to a central simple algebra
with certain 2-primary reduced behavior. It also falls out of Karpenko’s
recent computation of the Chow ring of a generic Severi–Brauer variety
associated to a central simple algebra of index 4 and exponent 2 given
in [Kar17b]; see Remark 3.4 below for a short proof along these lines.
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Here we give another proof of the fact that the Chow group of 1-cycles
on a Severi–Brauer variety associated with a biquaternion algebra are
torsion-free, see Theorem 3.1. The proof goes as follows. First, we
identify a collection of generators for these Chow groups using some
results from [Mac21a]; this step requires the Grothendieck-Riemann-
Roch without denominators theorem [Ful98, Example 15.3.6]. Second,
we construct some explicit cycles that represent the classes of these
generators; one of these cycles is characterized as having geometrically
linear components, it is a geometrically a union of two pairs of skew
lines forming a 4-gon of lines in 3-space, and the other is geometrically
an elliptic normal curve. Finally, we construct relations between these
cycles by showing that we can degenerate one into the other.

The main impetus for re-proving this theorem was to develop new
techniques for studying particular Severi–Brauer varieties. Karpenko’s
methods, despite having been applied very successfully in the study of
generic Severi–Brauer varieties, are limited by the fact that they don’t
apply to arbitrary cycles. The proof that we give here is a step in this
direction: we show how one can determine relations between explicit
cycles using only the geometry of a Severi–Brauer variety. The more
difficult problem of finding an explicit collection of cycles that are both
usable and which generate the Chow group of a Severi–Brauer variety
(in any positive dimension and of codimension two or more) – without
appealing to the Grothendieck-Riemann-Roch without denominators
theorem – is still open.

Acknowledgments. I want to thank Danny Krashen for explaining
to me the proof of Proposition 5.5. I’d also like to thank an anonymous
referee for both a careful reading of this text and for the proof contained
in Remark 3.3. Any errors contained in these proofs are now my own.

2. Preliminaries

Throughout this text we fix an arbitrary field k that we will use
as a base. We let A be an arbitrary central simple k-algebra and we
write X = SB(A) for the associated Severi–Brauer variety, i.e. X is
the subvariety of Gr(deg(A), A) whose R-points, for any finite type k-
algebra R, are those projective R-module summands of A⊗k R which
have rank deg(A) and are also right ideals of A⊗k R.

We write ζX for the tautological sheaf on X, i.e. for the restriction of
the universal subsheaf on Gr(deg(A), A) to X. Given an integer i ≥ 0,
and a simple left A⊗i-module Mi, we write ζX(i) for the tensor product
ζ⊗i
X ⊗A⊗i Mi; note that Mi is unique up to isomorphism so that ζX(i)
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is as well. We write CT(X) ⊂ CH(X) for the subring of the integral
Chow ring generated by all Chern classes of ζX(1); it is canonically
graded with summands CTi(X) and CTi(X) contained in CHi(X) and
CHi(X) respectively. The following result gives a complete description
of the ring structure of CT(X). (We recall that the degree of the class
of a cycle ξ in the Chow ring CH(X) of a Severi–Brauer variety X is
defined to be the degree of the pullback ξkalg considered in CH(Xkalg)
for an algebraic closure kalg of the base field k.)

Theorem 2.1 ([Kar17b, Proposition 3.3]). Assume that A is a division
algebra which has index ind(A) = pn for some prime p and any n ≥ 0.
Then CTi(X) = Z for any 0 ≤ i ≤ deg(A)− 1 with generators

ci(ζX(1)) and c1(ζX(1))
i

having degrees deg(ci(ζX(1))) =
(
pn

i

)
and deg(c1(ζX(1))

i) = pni.

Remark 2.2. The proof of Theorem 2.1 uses a specialization argument
from the generic case; see the beginning of Section 4 for more details.
We remark that the proof doesn’t require any significant input from the
K-theory of Severi–Brauer varieties; it uses only some computations of
equivariant intersection theory, see also [KM06, §8.1].

The piece of the Chow group CHi(X) that is typically too difficult
to compute is the torsion subgroup Tor1(CH

i(X),Q/Z). But, one can
try to analyze this torsion subgroup via the short exact sequence

0 → CTi(X) → CHi(X) → Qi(X) → 0.

Here Qi(X) is the cokernel of the canonical inclusion CTi(X) ⊂ CHi(X)
and, since the groups CTi(X) and CHi(X) have the same Q-rank, there
is an inclusion Tor1(CH

i(X),Q/Z) ⊂ Qi(X). This doesn’t necessarily
make the problem of computing the torsion subgroup of CHi(X) any
easier. However, one can write out an explicit generating set for Q2(X),
see [Mac21a, Proposition 3.7]. As a particular case, we have:

Proposition 2.3. Suppose that A is a division algebra with ind(A) = 4
and exp(A) = 2. Then Q2(X) is generated by c1(ζX(2))

2.

Remark 2.4. Proposition 2.3 can also be proved immediately by using
the Grothendieck-Riemann-Roch (GRR) without denominators [Ful98,
Example 15.3.6] and Quillen’s computation [Qui73, Theorem 4.1] of the
group K(X) for the Severi–Brauer variety X. In this case, the group
K(X) is additively generated by the classes of OX , ζX(1), ζX(2), and
ζX(3) so the GRR theorem implies CH2(X) is additively generated by
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polynomials in the Chern classes of these bundles. Isolating monomials
in these Chern classes shows that CH2(X) is generated by

c1(ζX(1))c1(ζX(2)), c1(ζX(1))c1(ζX(3)), c1(ζX(2))c1(ζX(3)),

c1(ζX(1))
2, c1(ζX(2))

2, c1(ζX(3))
2, c2(ζX(1)), and c2(ζX(3)).

Now since A has exponent exp(A) = 2, the Picard group Pic(X) ∼= Z
is generated by c1(ζX(2)); this allows one to eliminate the entire first
row along with the first and third term from the second row in the
generators above. Finally, there’s a canonical isomorphism of bundles
ζX(3) ∼= ζX(1)⊗ ζX(2) so that

c2(ζX(3)) = c2(ζX(1)) + 3c1(ζX(2))c1(ζX(3)) + 6c1(ζX(2))
2

which shows that CH2(X) is generated by c1(ζX(2))
2 and c2(ζX(1)).

In this same case, we can say a bit more about the class c1(ζX(2))
2.

Lemma 2.5. Suppose that A is a division algebra with ind(A) = 4
and exp(A) = 2. Then there is a smooth and irreducible curve E ⊂ X
having the following properties:

(1) E is geometrically the intersection of two quadric surfaces;
(2) we have [E] = c1(ζX(2))

2 inside CH1(X).

Proof. By Albert’s theorem, the algebra A decomposes A ∼= Q1 ⊗ Q2

as a tensor product of two quaternion algebras Q1, Q2 (for an algebraic
proof, see [KMRT98, Theorem 16.1]; for a proof by geometric methods,
see [Art82, Theorem 5.5]). Set Y1 = SB(Q1) and Y2 = SB(Q2). There
is an embedding

s : Y1 × Y2 → X

which is geometrically, i.e. over an algebraic closure kalg of the base
field, isomorphic to the Segre embedding of a quadric surface in P3.
Let E ⊂ Y1 × Y2 be a general hyperplane section from the complete

linear system associated to the line bundle (ζY1(2)⊠ ζY2(2))
∨. We can

find such an E that is smooth and geometrically irreducible by Bertini’s
theorem [Jou83, Théorème 6.10 et Corollaire 6.11] using that the base
field is infinite (since all division algebras over finite fields are trivial).
We have that s∗([Y1×Y2]) = −c1(ζX(2)) using that deg(Y1×Y2) = 2

in X and Pic(X) = Z with a generator of degree 2. One can also check
(over kalg) that s∗ζX(1) ∼= ζY1(1)⊠ ζY2(1). Hence, it follows

c1(ζX(2))
2 = −s∗([Y1 × Y2]) · c1(ζX(2))
= −s∗([Y1 × Y2] · c1(ζY1(2)⊠ ζY2(2)))

= −s∗(c1(ζY1(2)⊠ ζY2(2)))

= −s∗(−[E]) = s∗([E]) = [E].
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This proves part (2) of the lemma and (1) follows from the construction.
Note that E has genus g(E) = 1 and degree deg(E) = 4 inside X. The
former of these can be checked over kalg as Ekalg is a curve of bidegree
(2, 2) on a quadric surface. □

3. The Proof

In this section, we prove the main theorem. We leave the verification
of some specific details until later sections.

Theorem 3.1 ([Kar98, Proposition 5.1]). Let X = SB(Q1 ⊗ Q2) be
the Severi–Brauer variety associated to a biquaternion division algebra.
Then CH1(X) = Z is torsion-free.

Proof. To follow the notation of Section 2, we write A = Q1 ⊗ Q2.
We’re going to verify explicitly the equality of cycle classes

c1(ζX(2))
2 = 2(3c2(ζX(1))− c1(ζX(1))

2)

which will show that Q2(X) = 0 by Proposition 2.3.
Let F/k be a biquadratic Galois splitting field for A with Galois

group G = Gal(F/k). Choose generators σ, τ so that G = {1, σ, τ, στ}.
Find a closed point x ∈ X with residue field k(x) = F and identify the
F -points of xF with elements of G. Let Lσ,στ ⊂ XF denote the line
passing through σ and στ . We define the lines L1,σ, Lτ,στ , and L1,τ

similarly. Now each of the unions

C ′ = L1,σ ∪ Lτ,στ and D′ = L1,τ ∪ Lσ,στ

form aG-orbit and hence descend to curves C,D ⊂ X with C×kF = C ′

and D ×k F = D′.
By Corollary 5.6 below, both curves C and D represent the cycle

class 3c2(ζX(1))− c1(ζX(1))
2 so that

[C ∪D] = [C] + [D] = 2(3c2(ζX(1))− c1(ζX(1))
2).

We’re going to show that C ∪D is a rational degeneration of any curve
E from Lemma 2.5 so that they represent the same cycle class. More
precisely, we’re going to show there exists a proper surface S with a flat
morphism to P1, say π : S → P1, and a morphism ρ : S → X so that ρ is
a closed immersion on any fiber of π and the restriction of ρ to the fibers
over points t0, t1 ∈ P1(k) are ρ(π−1(t0)) = E and ρ(π−1(t1)) = C ∪D.
Since π is flat in this scenario, and since [t0] = [t1] ∈ CH0(P1), we find
an equality

[E] = ρ∗π
∗(t0) = ρ∗π

∗(t1) = [C ∪D]

in CH1(X) which implies that Q2(X) = 0 as desired.
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It remains to construct the triple (S, π, ρ). For this, we first consider
the Hilbert scheme Hilb4t(P3

F/F ) parametrizing F -subschemes of P3
F

having Hilbert polynomial h(t) = 4t. There is a rational map

Λ : Gr(2,Γ(P3
F ,O(2))) 99K Hilb4t(P3

F/F )

sending a 2-dimensional subspace V ⊂ Γ(P3
F ,O(2)) to the vanishing

set of those polynomials in V . Writing P = P(Γ(P3
F ,O(1))), the map

Λ is defined outside the image of the multiplication map

P×Gr(2,Γ(P3
F ,O(1))) → Gr(2,Γ(P3

F ,O(2))), (f, ⟨g, h⟩) 7→ ⟨fg, fh⟩
and the image of Λ is contained inside H4,1,3, the irreducible component
of Hilb4t(P3

F/F ) containing the open subscheme parametrizing smooth
curves of degree 4 and genus 1. Since H4,1,3 is geometrically irreducible
and of dimension 16 by [Ein86, Theorem 8], we find that Λ is birational
between its domain and this component H4,1,3.

Let ξ ∈ Z1(G,PGL4(F )) be a Galois 1-cocycle representing the class
of X inside of H1(G,PGL4(F )). Using ξ one can descend Λ to a map

Λξ : SB2(S
2(A)) 99K Hilbtw

4t (X/k)

from a generalized Severi–Brauer variety of the second symmetric power
S2(A) of A to the ξ-twisted Hilbert scheme of X (for more on twisted
Hilbert schemes see Section 5). The map Λξ is also a birational map
between its domain and the irreducible component Ell4(X), containing
the image of Λξ, which is an F/k-form of H4,1,3.

The algebra S2(A) is split by [Art82, Example 4.5] and in this case
SB2(S

2(A)) = Gr(2,Γ(X, ζX(2)
∨)). Lemmas 5.2 and 5.4 below show

that the k-points corresponding to C ∪D and E lie in the image of Λξ.
Hence there is a rational map

P1 99K Gr(2,Γ(X, ζX(2)
∨)) 99K Hilbtw

4t (X/k)

extending to a genuine morphism ϕ : P1 → Hilbtw
4t (X/k) that passes

through these two points.
The universal family Univ4t(P3

F/F ) on the scheme Hilb4t(P3
F/F )

descends to a universal family Univtw
4t (X/k) on the ξ-twisted Hilbert

scheme Hilbtw
4t (X/k). Letting S be the surface Univtw

4t (X/k) ×ϕ P1,
considered as a closed subscheme of X ×k P1, and denoting by π, ρ the
corresponding projections, it follows that (S, π, ρ) satisfy all the desired
properties, completing the proof. □

Remark 3.2. The existence of the map Λξ does not depend on the
assumption that A has exponent exp(A) = 2; it exists more generally
for any division algebra A with ind(A) = 4. In the case exp(A) = 4, the
algebra S2(A) has index ind(S2(A)) = 2 by [Art82, Example 4.5] and so
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SB2(S
2(A)) is also rational by [Bla91, Proposition 3]. Hence the open

subscheme of Ell4(X) parametrizing smooth and irreducible curves of
genus 1 has a k-rational point. This gives an alternative proof of a result
from [dJH12]; namely, that every Severi–Brauer variety associated to
a central simple algebra of index 4 contains a smooth curve of genus 1.

Remark 3.3. There are two main parts to the proof of Theorem 3.1.
The first part, completed in Corollary 5.6, consists of proving that both
of the curves C and D represent the cycle class 3c2(ζX(1))−c1(ζX(1))

2.
The remainder of this paper is devoted to proving this representation:
in Section 4 we show, by specialization from the generic case, that this
linear combination of Chern classes is represented by a subscheme of
X which is geometrically a union of two skew lines; we then show, in
Section 5, that every subscheme of X which is geometrically a union
of two skew lines represents the same cycle class in CH1(X) through a
study of the connectedness properties of the scheme which parametrizes
all such subschemes of X.

The second main part of the proof of Theorem 3.1 is the proof that
both of the classes [C ∪D] and [E], for a geometrically elliptic normal
curve E ⊂ X, are equal inside CH1(X). In the above proof, we show
that [C ∪ D] = [E] by constructing a rational degeneration from one
subscheme to the other. We can give another proof of this equality
without the use of twisted Hilbert schemes (although, twisted Hilbert
schemes are still used in Section 5 below for the first part of the proof);
in the following, we show [E] = [C ∪ D] using Hilbert’s Theorem 90.
I’d like to thank an anonymous referee for explaining to me this proof.

Keep notation as in the proof of Theorem 3.1. LetW ⊂ Γ(X, ζX(2)
∨)

be the k-vector subspace of sections whose vanishing locus contains
both C and D. Over the biquadratic splitting field F/k, the F -vector
space WF ⊂ Γ(P3

F ,O(2)) consists of all sections with vanishing locus
containing both C ′ and D′. One can check directly that dimF (WF ) ≥ 2
(it’s possible to construct two different unions of two planes which
both vanish at C ′ and D′ using the F -points of xF where x ∈ X has
k(x) ∼= F ; see the proof of Lemma 5.2). So, by Hilbert’s Theorem 90
(essentially a dimension count in this case), we find that dimk(W ) ≥ 2.
If θ and η are two linearly independent elements of W , then the zero

sections of θ and η both represent c1(ζX(2)
∨). Also, the intersection of

the zero sections of θ and η is exactly C ∪D. So there is an equality

[C ∪D] = c1(ζX(2)
∨)2 = c1(ζX(2))

2 = [E]

inside CH1(X) by [Sta19, Tag 0B1I] and Lemma 2.5.

https://stacks.math.columbia.edu/tag/0B1I
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Remark 3.4. A short proof of Theorem 3.1 can be found in Karpenko’s
computation of the Chow ring of a Severi–Brauer variety associated to
a generic central simple algebra of index 4 and exponent 2 [Kar17b].
Namely, there’s an equality of classes inside the λ-ring K(X)

λ2([ζX(1)]) = 6[ζX(2)] and [ζX(1)]
2 = 16[ζX(2)]

so that 3λ2([ζX(1)])− [ζX(1)]
2 = 2[ζX(2)] is contained in the λ-subring

of K(X) generated by ζX(1). It follows that Chern classes of ζX(2)
⊕2

are contained in CT(X). So c2(ζX(2)
⊕2) = c1(ζX(2))

2 is also contained
in CT(X) and therefore Q2(X) = 0.

4. Specialization Arguments

In this section, we prove some results by specialization from the
generic case. We work over a fixed base field k and now we let A be a
given central division k-algebra of degree deg(A) = n withX = SB(A).
We choose an embedding G = PGLn ⊂ GLN of algebraic groups and
consider the quotient S = GLN/G. The quotient map GLN → S is a
G-torsor and, if P ⊂ G is a parabolic subgroup with G/P ∼= Pn−1, the
quotient GLN/P → S is a Severi–Brauer S-scheme.
From now on we write X = GLN/P for this Severi–Brauer S-scheme

and Xgen for its generic fiber over S. The Severi–Brauer variety Xgen is
associated to a division k(S)-algebra U gen having index ind(U gen) = n
and exponent exp(U gen) = n. Moreover, Xgen is versal in the sense
that for any Severi–Brauer variety Y over a field extension F/k with F
infinite, there is an F -point s ∈ S(F ) so that the fiber Xs is isomorphic
with Y . Since S is smooth we can find, at any point s ∈ S, a sequence of
DVRs say (R0,m0), ..., (Rj(s),mj(s)) satisfying the following conditions:

(1) Frac(R0) = k(S),
(2) Ri/mi

∼= Frac(Ri+1)
(3) Rj(s)/mj(s)

∼= k(s).

Hence, if Y is defined over the base field k, this means that there exist
specialization homomorphisms [Ful98, §20.3]

CHi(Xgen) → CHi(Y )

which take ci(ζXgen) to ci(ζY ) or, in the case that Y is associated to a
division algebra of index n, that take ci(ζXgen(1)) to ci(ζY (1)).

The Chow groups CHi(X
gen) are torsion-free for all i ≥ 0 by [Kar17a,

Proposition 3.2]. For those integers i where these groups are nonzero
(i.e. for i = 0, ..., n− 1) this means that CHi(X

gen) = Z. Passing to a
splitting field forXgen, one can determine that generators of CHi(X

gen)
have degrees ±n/ gcd(n, n− i− 1).
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Using this description of the Chow groups of Xgen together with the
specialization maps above, we provide in Proposition 4.1 a description
of some cycle representatives for the Chern classes ci(ζX(1)); this is
not used in the proof of Theorem 3.1 but it is of independent interest.
Then we turn to the case that A is a biquaternion algebra and prove
Lemma 4.2 below on representatives for a generator of CT2(X); this is
used explicitly in the proof of Theorem 3.1.

Proposition 4.1. For any integer i ≥ 1, the class (−1)ici(ζX(1)) is
represented by the cycle class of a scheme which is geometrically a union
of i-dimensional linear spaces.

Proof. Choose a field extension F/k(S) of degree n splitting Xgen and
let E/F be a Galois closure of F inside a fixed separable closure F sep.
Choose any point x in Xgen with residue field F . The set of E-points
in xE has exactly n elements which form an orbit for the Galois group
Gal(E/F ). For any integer i ≥ 1, denote by V gen

i,E ⊂ Xgen
E the union of

all i-dimensional linear spaces of Xgen
E passing through any (i+1)-tuple

of the n points contained in xE. The union V gen
i,E is Galois stable, so it

descends to a subvariety V gen
i of Xgen.

As X is a Severi–Brauer variety defined over k there is some k-point
s ∈ S(k) with Xs

∼= X. Let (R0,m0), ..., (Rj(s),mj(s)) be a sequence of
DVRs connecting the fields k(S) and k(s) as above. Write Vi,0 for the
closure of V gen

i inside X ×S R0.
Let T ′

0 be the integral closure of R0 inside E and write T0 = (T ′
0)n0

for the localization at a fixed maximal ideal n0 ⊂ T ′
0 lying above m0.

By construction, the fraction field of T0 is E and the DVR (T0, n0) is
flat over R0. Now the Severi–Brauer scheme X ×S T0 is split since it
is generically split [Mac21b, Lemma A.1]. Moreover, X ×S T0

∼= Pn−1
T0

since every finitely generated projective T0-module is free.
The scheme Vi,0 ×S T0 is generically a union of

(
n

i+1

)
linear spaces.

The closure of each of these linear spaces intersects the special fiber
X×S(T0/n0) in a linear space as well. Hence the irreducible components
of Vi,0 ×S (T0/n0) must all be linear (possibly with multiplicities).
The field extension T0/n0 of R0/m0 is finite since R0 is a Nagata ring

[Sta19, Tag 0335]. Let T ′
1 be the integral closure of R1 in T0/n0 and

T1 = (T ′
1)n1 the localization at a fixed maximal ideal n1 lying over m1.

Then T1 is finite over R1 since R1 is also a Nagata ring. Write Vi,1 for
the closure of Vi,0×S (R0/m0) inside X ×SR1. It follows, as above, that
Vi,1×S (T1/n1) is a union of linear spaces (possibly with multiplicities).

Repeating this process, we get a sequence of spaces Vi,j contained
in X ×S Rj with both generic and special fibers over Rj the union
of some linear spaces. It follows that the specialization of the cycle

https://stacks.math.columbia.edu/tag/0335
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class defined by V gen
i to X is represented by a scheme Vi,j(s) ×S k(s)

inside X which is geometrically a union of linear spaces [Ful98, §20.3].
Using [Kar17a, Proposition 3.2] one can check that V gen

i represents the
class of (−1)ici(ζXgen(1)) by comparing degrees geometrically so, by the
discussion above the proposition, this concludes the proof. □

Using ideas from the proof of the above proposition, we can prove
the following lemma that is used in the proof of Corollary 5.6 below:

Lemma 4.2. Suppose that A = Q1 ⊗ Q2 is a biquaternion division
algebra. Then there exists a subscheme V ⊂ X which is geometrically
a union of two skew lines and such that

[V ] = 3c2(ζX(1))− c1(ζX(1))
2

inside CH1(X) with X = SB(A).

Proof. We assume for this proof that Xgen is the generic Severi–Brauer
variety associated to a generic central division k-algebra U gen of index
ind(U gen) = 4 and exponent exp(U gen) = 4. By a theorem of Albert
[Alb39, §XI.6 Theorem 9], there is a quartic Galois field extension F/k
contained in U gen with Galois group Gal(F/k) = Z/2Z× Z/2Z. Let σ
and τ be two generators for this group.

Pick a point x of Xgen with residue field k(x) = F . Identify the
F -points of xF with the set {1, σ, τ, στ} in a way that is compatible
with the Galois action on Xgen

F . Then the union

V ′ = L1,σ ∪ Lτ,στ ,

of the lines passing through {1, σ} and {τ, στ} respectively, is Galois
stable. Hence there is a subscheme V gen ⊂ Xgen with V gen

F
∼= V ′.

Let s ∈ S(k) be such that Xs
∼= X, and fix a sequence of DVRs

(R0,m0), ..., (Rj(s),mj(s)) connecting the fields k(S) and k(s) as before.
Following the argument of Proposition 4.1, we arrive at a subscheme
V ⊂ X which is geometrically a union of lines. Again, by using [Kar17a,
Proposition 3.2] and comparing degrees, one can check that the cycle
class of V represents the class 3c2(ζX(1))− c1(ζX(1))

2.
There are three possible cases: either V is geometrically the union

of two skew lines, V is geometrically the union of two lines contained
inside some plane, or V is geometrically a double line. However, since
X is associated to a division algebra, the subscheme V is geometrically
nondegenerate [Mac21b, Lemma 3.4] leaving only the possibility that
V is geometrically the union of two skew lines. □
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5. Twisted Hilbert Schemes

Twisted Hilbert schemes are constructed in [Mac21b]. In the setting
that we’re interested in, we can describe these schemes as twisted forms
of Hilbert schemes along a Galois 1-cocycle. We keep notation as above:
k is a given base field, F/k is a finite Galois field extension with Galois
group G = Gal(F/k), and ξ ∈ Z1(G,PGLn+1(F )) is a 1-cocycle.

Let ϕ(t) be in Q[t]. Fix an F -automorphism α in AutF (Pn ×k F ).
Then α induces an automorphism of the scheme Hilbϕ(t)(Pn ×k F/F )
due to the representability of the Hilbert scheme. In more detail, the
data of a morphism V → Hilbϕ(t)(Pn ×k F/F ) is precisely the data of
a subscheme U ⊂ Pn × V that is flat and proper over V with Hilbert
polynomial ϕ(t). By representability, there is a universal subscheme

Univϕ(t)(Pn ×k F/F ) ⊂ Pn ×Hilbϕ(t)(Pn ×k F/F )

and α induces the automorphism corresponding to the subscheme

(α× Id)(Univϕ(t)(Pn ×k F/F )) ⊂ Pn ×Hilbϕ(t)(Pn ×k F/F )

gotten by composition with α.
Identifying PGLn+1(F ) with AutF (Pn ×k F ), we get a 1-cocycle ξ′

for G with values in AutF (Hilbϕ(t)(Pn×k F/F )) by pushing forward ξ.
If X is the Severi–Brauer variety that one gets by twisting Pn ×k F by
ξ, then the ξ-twisted Hilbert scheme Hilbtw

ϕ(t)(X/k) is the scheme that
one gets by twisting Hilbϕ(t)(Pn/k) ×k F by ξ′. The twisted Hilbert
scheme satisfies a representability property similar to the usual Hilbert
scheme [Mac21b, Theorem 2.5].

Remark 5.1. Let L be a very ample line bundle on X of degree m.
Then the twisted Hilbert schemes associated to X are related to the
usual Hilbert schemes of X, constructed with respect to the complete
linear system associated with L, by an isomorphism

Hilbtw
ϕ(t)(X/k) ∼= Hilbϕ(mt)(X/k).

The benefit to considering the twisted version of these schemes, rather
than their untwisted counterparts, is that the twisted versions allow
one to avoid the choice of a projective embedding of X.

In the proof of Theorem 3.1, we used the following result:

Lemma 5.2. Let A be a division k-algebra and assume ind(A) = 4.
For a Galois splitting field F/k of A, define the rational map Λ

Λ : Gr(2,Γ(P3
F ,O(2))) 99K Hilb4t(P3

F/F )
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by sending a 2-dimensional subspace V ⊂ Γ(P3
F ,O(2)) to the vanishing

set of those polynomials in V and let

Λξ : SB2(S
2(A)) 99K Hilbtw

4t (X/k)

be the map that one gets by twisting.
Now assume that A = Q1 ⊗ Q2 decomposes into a tensor product

of two quaternion algebras and fix a biquadratic Galois extension F/k
splitting A and with Galois group G = {1, σ, τ, στ}. Pick a point x ∈ X
with residue field F and label the F -points of xF with elements of G.
Let C,D ⊂ X be those curves with C ′ = C ×k F and D′ = D×k F the
unions

C ′ = L1,σ ∪ Lτ,στ and D′ = L1,τ ∪ Lσ,στ

where Lp,q is the line through the points p and q.
Then the point [C ∪D] of Hilbtw

4t (X/k)(k) is in the image of Λξ.

Proof. The map Λ is birational between its domain and an irreducible
component of its target. Since this implies the same for Λξ, it suffices
to prove that there is some algebraic field K/k so that [CK ∪DK ] is in
the image of Λξ ×k K. We’ll show that this holds when K = F .
Let P (1, σ, στ) be the plane passing through the points 1, σ and τ .

We note that this makes sense because no three of the points of xF lie
on a line (the F -points of xF span all of P3

F ). Define planes P (1, τ, στ),
P (1, σ, τ), and P (σ, τ, στ) similarly.

Now we have

(P (1, σ, στ) ∪ P (1, τ, στ)) ∩ (P (1, σ, τ) ∪ P (σ, τ, στ)) = CF ∪DF

with the left-hand side the vanishing set of two (independent) quadratic
polynomials, i.e. defining an F -point in Gr(2,Γ(P3

F ,O(2))). □

Example 5.3. In the above proof, neither of the unions

P (1, σ, στ) ∪ P (1, τ, στ) and P (1, σ, τ) ∪ P (σ, τ, στ)

define Galois stable sections descending to elements in Γ(X, ζX(2)
∨).

However, there are always two linearly independent sections of ζX(2)
∨

with vanishing locus the scheme C ∪D. Here’s an example.
Let char(L) ̸= 2, let k = L(a, b, c, d) for four independent variables

a, b, c, d and let F = k(
√
a,
√
b). Let G = Gal(F/k) be the Galois group

with elements {1, σ, τ, στ} acting on F by

σ(
√
a) = −

√
a, σ(

√
b) =

√
b, τ(

√
a) =

√
a, and τ(

√
b) = −

√
b.



CHOW GROUPS OF BIQUATERNION SB-VARIETIES 13

Take the 1-cocycle ξ with values in PGL4(F ) defined by the following
matrices:

ξ(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ξ(σ) =


0 0 c 0
0 0 0 c
1 0 0 0
0 1 0 0



ξ(τ) =


0 d 0 0
1 0 0 0
0 0 0 d
0 0 1 0

 ξ(στ) =


0 0 0 cd
0 0 c 0
0 d 0 0
1 0 0 0

 .

Inside P3
F , the points e1, e2, e3, e4 defined by ei = (δij)

4
j=1 with δij = 1

if i = j and δij = 0 otherwise, corresponding to standard basis vectors,
form a G-orbit under the ξ-twisted action. Hence this G-orbit descends
to a point x with k(x) = F on the Severi–Brauer variety X obtained
by twisting P3

F along ξ.
In this setting, there are sections θ, η ∈ Γ(X, ζX(2)

∨) so that the
vanishing loci intersect to V (θ ×k F ) ∩ V (η ×k F ) = CF ∪DF over F .
Moreover, the sections θ, η are determined by

θ ×k F = x2x3 + x1x4 and η ×k F = (
√
ab)x2x3 − (

√
ab)x1x4

with x1, x2, x3, x4 the usual coordinate sections on P3
F .

Lemma 5.4. Keep the notation of Lemma 5.2. Suppose that E ⊂ X is
a smooth curve which is geometrically the intersection of two quadric
surfaces. Then the point [E] of Hilbtw

4t (X/k)(k) is in the image of Λξ.

Proof. As in the proof of Lemma 5.2, it suffices to check that [EF ] is
in the image of Λ and this is true by assumption. □

Consider now the twisted Hilbert scheme Hilbtw
2t+2(X/k). This space

has two irreducible components. Geometrically, the general point of
one of these components parametrizes two skew lines and the general
point of the other parametrizes unions of a conic and an isolated point.
Both of these irreducible components are smooth.

We write Skew(X) for the irreducible component of Hilbtw
2t+2(X/k)

which parametrizes those subschemes of X that are geometrically the
union of two skew lines. There is an isomorphism

Skew(X) ∼= Bl∆(S
2(SB2(A)))

with the blow up of the symmetric square of the second generalized
Severi–Brauer variety associated to A along the diagonal. To see this
one can consider the Galois action over an algebraic closure and appeal
to [CCN11, Theorem 1.1 (3)].
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In particular, the scheme Skew(X) contains, as an open subscheme,
the variety ét2(A) constructed in [Kra10]. There the scheme ét2(A) is
constructed as follows. First, let V = SB2(A)× SB2(A) and consider
the open subscheme V∗ parametrizing pairs of ideals (I, J) such that
I ∩ J = 0 and I + J = A. The symmetric group S2 acts on V∗ freely,
and ét2(A) is defined as the quotient ét2(A) = V∗/S2.

In [Kra10, Theorem 6.6] it’s shown that ét2(A) is R-trivial when
the characteristic of k is not 2. In fact, this result is also true if the
characteristic of k is 2.

Proposition 5.5. Suppose that A is a biquaternion division algebra.
Then ét2(A) is R-trivial, i.e. for any field extension F/k and for any
two points x, y ∈ ét2(A)(F ) there is a rational map ϕ : P1 99K ét2(A)
so that x = ϕ(F )(p) and y = ϕ(F )(q) for some p, q ∈ P1(F ).

Proof. It suffices to prove the remaining case, i.e. assuming that the
characteristic of k is 2. The proof is nearly identical to that of [Kra10,
Theorem 6.6] with only minor adjustments. The algebra A is equipped
with a canonical symplectic involution σ [KMRT98, Proposition 2.23].
The set Symd(A, σ) = {a + σ(a) : a ∈ A} of symmetrized elements of
A is a 6-dimensional k-vector space [KMRT98, Proposition 2.6 (2)].
For every right ideal I ⊂ A of reduced dimension 2, the intersection

I ∩ Symd(A, σ) is a 1-dimensional subspace of Symd(A, σ) which is
isotropic for the quadratic Pfaffian norm form Nrpσ on Symd(A, σ).
This assignment defines an isomorphism [KMRT98, Proposition 15.20]
between SB2(A) and the quadric V (Nrpσ) ⊂ P(Sym(A, σ)).
Let W be the quotient ((V (Nrpσ)×V (Nrpσ))\∆)/S2. Define a map

W → Gr(2, Symd(A, σ)) by sending a pair (x, y) to the plane spanned
by both of these points. One can check, by extending scalars to an
algebraic closure kalg, that this map realizes W as an open subvariety
of the Grassmannian Gr(2, Symd(A, σ)). Now ét2(A) is open in W ,
and therefore also open in this Grassmannian. Since the Grassmannian
variety is R-trivial, this implies that ét2(A) is as well. □

The variety ét2(A) inside Skew(X) is exactly the open subscheme
whose points correspond to subschemes of X which are geometrically
a pair of skew lines. From Albert’s theorem [Alb39, §XI.6 Theorem 9],
the set of k-rational points of ét2(A)(k) is nonempty and from [Kra10,
Proposition 6.2] this implies that ét2(A) is unirational. As in the proof
of Theorem 3.1, the above Proposition 5.5 implies that all of those
subschemes of X which correspond to fibers of these k-points of ét2(A)
represent the same cycle class in CH1(X). Hence we’ve proved:
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Corollary 5.6. Suppose that A = Q1 ⊗ Q2 is a biquaternion algebra.
Let F/k be a biquadratic Galois splitting field for A with Galois group
G = Gal(F/k). Choose generators σ and τ so that G = {1, σ, τ, στ}.
Pick a closed point x ∈ X with residue field k(x) = F and identify the
F -points of xF compatibly with elements of G.

Let Lσ,στ ⊂ XF denote the line passing through σ and στ and define
the lines L1,σ, Lτ,στ , and L1,τ similarly. Let C,D ⊂ X be the curves,
which exist by descent, so that C ×k F = C ′ and D ×k F = D′ where

C ′ = L1,σ ∪ Lτ,στ and D′ = L1,τ ∪ Lσ,στ .

Then there is an equality

[C] = 3c2(ζX(1))− c1(ζX(1))
2 = [D]

inside CH1(X).

Proof. We proved in Lemma 4.2 that there is a subscheme V defining
a point of ét2(A) with [V ] = 3c2(ζX(1)) − c1(ζX(1))

2. Both C and D
also define k-points of ét2(A), hence [C] = [V ] = [D]. □
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