THE ARITHMETIC GENUS OF A COMPLETE INTERSECTION CURVE
EOIN MACKALL

ABSTRACT. The purpose of this short note is to relate two formulas for the genus of a curve
that can be realized as a complete intersection in some projective space.

Fix a field k. Without any loss of generality, one can suppose that k is algebraically closed
throughout this note. Let X be a projective k-variety and choose an embedding

X C P" = Proj(k[xo, ..., xp)).

We say that X is a complete intersection (with respect to this embedding) if X is the
vanishing locus X = V. (f1,..., fo) of ¢ = codim(X,P") homogeneous equations fi, ..., f. of
the coordinate ring k|xy, ..., z,] that form a regular sequence for this ring.

When X is a complete intersection curve (i.e. dim(X) = 1), the arithmetic genus of X has
been calculated in [AS98, Corollary 2.

Theorem 0.1. Suppose that X = V. (f1,..., fa_1) C P" is a complete intersection curve.
Then the arithmetic genus g(X) of X equals

w S (2 (57

i=1 1<a1<-<a;<n—1
where for each 1 <1i <n — 1 we write d; = deg(f;). !

Briefly, the proof of Theorem 0.1 utilizes the fact that the Koszul complex gives a resolution
for the structure sheaf of X by sums of twists of the tautological bundle on P"; the Euler
characteristic of X (and hence the arithmetic genus) can then be determined explicitly from
the computation [Sta20, Tag 01XT] of the cohomology of these twists.

The purpose of this note is to prove the following simplification of formula (no.1).

Theorem 0.2. Suppose that X = Vi (f1,..., fa_1) C P" is a complete intersection curve.
Then the arithmetic genus g(X) of X equals

1
(no.2) g(X):1+§(d1+"'+dnfl_n_l)dl"'dnfl
where for each 1 < i <n —1 we write d; = deg(f;).

Remark 0.3. If X = HyN---N H,_; is the intersection of hypersurfaces H; C P" such that
the sequence

H,, HNHy,, H NHyNHs ..., HN---NH,
consists of smooth schemes, then Theorem 0.2 can be proved using the adjunction formula
and induction; note that X is not assumed smooth, or even reduced, in Theorem 0.2.
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Before giving the proof, we make some initial observations. Consider the following set of
points S%;" C A%‘l(Z) consisting of tuples of integers with positive coordinates

(S0) Sttt =A(dy,...ydy1) :di €Z, dy,...;dy_q >0}
The arithmetic genus ¢g(X) from (no.2) agrees with the polynomial of Q[X1, ..., X,,_1]

(1) gn(Xre X = (1) (% > H(Xa1+---+Xai—j>>

i=1 a1<-<a; j=1

evaluated at the corresponding point of SZ;'. Because of the following lemma, we’ll often
work with the latter description of the arithmetic genus.

Lemma 0.4. Fiz an integer n > 2. Let V C A&_l be an arbitrary closed subvariety. Then
there is a containment SZ;' C V if and only if V = A%’l. In particular, if a polynomial
f(X1, ., X1) € Q[Xy, ..., X, 1] vanishes on S%y", then f(Xi, ..., Xn 1) = 0.

Proof. Let V- = V(f1,..., fm) be the affine variety defined as the vanishing locus of some
nonconstant polynomials fi, ..., fm € Q[X1, ..., X,,]. We'll show that there is a point of S7;"
not contained in V; to do this it suffices to work with any of the hypersurfaces V'(f;), and
without loss of any generality, we’ll assume V' = V(f). Since Q is infinite, there is a point
pE A&_l(Q) outside of V'; we can also assume that p has all positive coordinates. Let ¢ be
the line connecting p and the origin. Then the restriction of f to ¢ has finitely many zeros
and / intersects S”;" infinitely often. O

Lemma 0.5. Let n > 3 be an integer. Then g,(1, Xo, ..., Xp—1) = gn_1(Xo, ..., Xpi_1).

Proof. Identify S”;' with the intersection S?, NV (X; — 1) C AR, i.e. with the restriction of
SZ, to the hyperplane where X; = 1. In this case, g,(1, X2, ..., Xp—1) — gn—1(X2, ..., Xp_1)
vanishes on every point of S”;', as they both compute the arithmetic genus. Applying
lemma 0.4 gives the result. 0

Lemma 0.6. Keep notation as in Lemma 0.7. Then there is an equality

gn<X1 + ]-7X27 cey Xn—l) = gn(X17X27 sy Xn—l)

+2(—1)i+"—1<(ni1)' > 1:[(X1+---+Xai—j)>

T l<ag<-<a; j=1

as elements of Q[ X1, ..., Xpn_1]-

Proof. Restricted to the set S”;" of (S0), the polynomial g, (X1, ..., X,,_1) agrees with the
function

n—1
i+tn— Xal+"'+Xai_1
gn(X1, 0, Xm) 1= ) (- 1) 1( > <X +...+X.—n—1)>'

=1 1<a1 < <a;<n—1

Because of the recursive formula for binomial coefficients,

()= ()"



the function g/ (X7, ..., X,,_1) satisfies the equality

n—1

E i+n— E: d++dal_1
g;(dlﬁ—l,dg, ...,dnfl) = g;(dl,dg, ...,dnfl)—f— (—1) tn-l ( < ! ))

i=1

1<ag<-<a; dl +oo Tt dai —-n
for any point (dy, ..., d,_1) of S”y*. In other words, the polynomial

gn(Xl + 17X27 cey Xn—l) - gn(XlaX27 -'-7Xn—1)

—Z(—1)i+"—1<(n_11)! Z H(X1+---+Xai—j)>

1<ag<-<a; j=1

vanishes restricted to S”;'; the claim follows from Lemma 0.4. Il
The proof of Theorem 0.2 is dependent on the following lemma.

Lemma 0.7. For any n > 2, there’s an equality
gn( X1,y oy X)) =14+ Xq - X1 b (X, o Xm1)
for some polynomial h, (X, ..., X,—1) € Q[X1, ..., X;,—1] with
ho( X1, o X)) = a1 X+ 4+ a1 X1 +c
for some aq, ...,a,_1,c € Q.

Proof. The claim is clear when n = 2 so assume n > 3. We'll use the recursive formula

gn(X1+ 1, Xo, o, Xo1) = gn (X1, Xoy ooy Xo1)

+Z_1(—1)i+n_1 (ﬁ Z I:I(Xl ++ X, —j)> :

I<as<-<a; j=1

After setting X; = 0 in the above recursion one gets the equality
gn(L XQa ceey Xn—l) - 9n(07 X27 ceey Xn—l) - 1 + gn—l(XQa ceey Xn—l)'
Since there’s also an equality ¢,(1, Xo, ..., X;i—1) = gn_1(Xao, ..., X;,—1) by Lemma 0.5, it
follows that
gn<07X27 "'7Xn71> —1=0.
As g, (X1, ..., X;,—1) is symmetric in the variables X;, it follows X; divides g, (X1, ..., Xp—1)—1
for each 1 <i < n — 1, which proves the first part of the lemma that there’s an equality
gn(Xb "-7Xn—1) =1+ Xl e Xn—lhn(le ---7Xn—1)

for some polynomial h, (X1, ..., X,,—1) € Q[X1, ..., X;,_1].
Now we show that h,,(dy, ..., d,,_1) as defined above is linear of the given form. To do this,
we work with the individual summands

1 1 ,
(FF) S+ X =),
14

Subtracting 1 from ¢, (X1, ..., X,,_1) and dividing the result by X; --- X,,_; is a polynomial in

Q[X1, ..., X;,—1] so, after expanding any of the summands (FF) and dividing by X; -+ X,,_1,

all monomials with nontrivial denominator must vanish after summing over all other terms
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with the same denominator. This leaves just the last term of the sum from (gn), when
i =n — 1, as a contributing factor to h, (X, ..., X;,_1). Expanding this term shows

n

1 .
ST+ X =) =
114

1

— ((X1 o+ X )+ (—1)”‘1M

2

where the summand L(X7, ..., X,,_1) is comprised of terms of degree smaller than n — 1, and
doesn’t contribute to the polynomial h, (X1, ..., X,,_1). After expanding (X; +---+ X,,_1)",
the monomial summands divisible by X - - - X,,_; are multiples of X;(X; - - - X,,_1) for varying
1 < i < n; after expanding (X; + -+ + X,,,)""!, the monomial summands divisible by
X -+ X,—1 are multiples of X;---X,, 1. As h,(X,...,X,,—1) is the polynomial that one
gets after dividing the sum of these summands by X; - - X,,_1, this shows h, (X1, ..., X,_1)
is linear of the given form, as claimed. O

Proof of Theorem 0.2. By Lemma 0.7, we have that
gn(dy,.sdn_1) =14+dy - dy_1hp(dy, ..., dy1)
for a linear polynomial
ho(dy,.coidp_q) = ardy + -+ + ap_1d,—1 + .
Note that, when n = 2, the equation (no.1) becomes

g2(dh) = (Zi - ;) I ) B %(d1 —3)dy.

2
Hence, when n > 3, one finds
g2<dz) = gn(l, ceey di, cevy 1) =1 -+ dzhn(l, ceey di7 couy 1)

by setting d; = 1 for all j # 4. It follows that a; = 1/2 for all 1 <i < n — 1. Finally, one
can solve for ¢ using the relation 0 = g, (1,...,1) where d; =1 forall 1 <i <n — 1. U

(X1 4+ X))+ L(X, ~an—1>>
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