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Abstract. Let A be a central simple algebra over a field F and of
odd index. We show that the torsion subgroup of the Chow group
CH1(X) of 1-cycles on the Severi–Brauer variety X = SB(A) is
trivial if and only if any curve in X is rationally equivalent to a
member of some collection of birationally equivalent curves on X.

1. Introduction

Chow groups of Severi–Brauer varieties have been of interest since
they first appeared in the proof of the Merkurjev–Suslin norm residue
isomorphism theorem [MS82]. In the proof of this theorem, the Chow
groups of Severi–Brauer varieties associated to central division algebras
of prime degree are shown to be torsion free.

Suslin later conjectured that the Chow groups of any Severi–Brauer
variety were torsion free [Sus84, Remark 10.14 and Conjecture 24.6].
The first counterexample to this conjecture, a Severi–Brauer variety
whose Chow ring contained nontrivial torsion, appeared in [Mer95].
Since then there have been a number of constructions of nontrivial
torsion in the Chow groups of specific Severi–Brauer varieties [Kar95,
Kar98, Kar17, Bae15, KM19, Mac20c].

All known examples of nontrivial torsion in the Chow groups of a
Severi–Brauer variety occur in the Chow groups of cycles of reasonably
large dimension. In this text, we study Chow groups of dimension one
cycles on a Severi–Brauer variety. This is the smallest dimension where
the structure of these Chow groups is unknown since the Chow group
of cycles of dimension zero is torsion free [CM06, Kra10].

The main results of this text are the Corollaries 2.3 and 3.8. Together
these corollaries prove that on any Severi–Brauer variety associated to
a central simple algebra of odd index there is a collection of birationally
equivalent curves so that the Chow group of cycles of dimension one is
torsion free if and only if the rational equivalence class of an arbitrary
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curve is represented by a member of this collection.

Notation. We use the following notation throughout:

• F is a base field
• A is a simple F -algebra with center F and finite F -dimension
• DA is the underlying division algebra of A
• the degree of A is the number deg(A) =

√
dimF (A)

• the index of A is the number ind(A) =
√

dimF (DA)
• X = SB(A) is the Severi–Brauer variety of dimension deg(A)− 1.

Conventions. We use the following conventions throughout:

• a variety is an integral scheme that is separated and of finite type
over a base field
• a curve is a scheme of dimension one that is separated and of finite

type over a base field.

2. Chow groups

Let A be a simple F -algebra with center F and finite F -dimension.
Associated to A is the Severi–Brauer variety X = SB(A). By definition
X is the subvariety of the Grassmannian Gr(deg(A), A) whoseR-points
X(R) ⊂ Gr(deg(A), A)(R), for any finite type F -algebraR, correspond
exactly to the projective summands of A ⊗F R that are also minimal
right ideals of A ⊗F R. In this section, we make some observations
regarding the Chow groups CHi(X) of dimension-i cycles on X.

Recall that there is a canonical vector bundle ζX on X coming from
the pullback along the embedding X ⊂ Gr(deg(A), A) of the universal
bundle of dimension-deg(A) F -subspaces of A. The fiber of ζX over an
R-point x of X(R) is the right ideal corresponding to x. This allows
one to define vector bundles

ζX(i) := ζ⊗iX ⊗A⊗i Mi

for every i ≥ 0 and for some choice of simple left A⊗i-module Mi.
Conventionally, we set ζX(i) := ζX(−i)∨ if i < 0.

We write CT(1;X) for the subring of CH(X) generated by the Chern
classes of ζX(1). The gradings on CH(X) induces gradings on CT(1;X).
We write

CTi(X) = CT(1;X) ∩ CHi(X) and CTi(X) = CT(1;X) ∩ CHi(X)

for the corresponding subgroups. By [KM19, Proposition A.8], there is
an identification CTi(X) = Z.
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Lemma 2.1. For any integer 0 ≤ i ≤ dim(X), there exists a closed
subvariety V ⊂ X with dim(V ) = i so that the rational equivalence
class [V ] in CHi(X) is contained in CTi(X).

Proof. If A is split, then X = Pn for some n ≥ 0 and ζX(1) = OPn(−1).
In this case the claim is immediate so that we can, from now on, assume
that A is nontrivial. In particular, we can assume that the base field
F is infinite.

The line bundle ζX(−ind(A)) = det(ζX(1)∨) is very ample so there
is a closed immersion

ρ : X → P(W )

with W = H0(X, ζX(−ind(A))). For each integer 0 ≤ i ≤ dim(X),
Bertini’s theorem [Jou83, Théorème 6.10 et Corollaire 6.11] then gives
a linear subspace Hi ⊂ P(W ) so that:

(1) the intersection Vi = Hi ∩ ρ(X) is smooth for all i ≥ 0,
(2) the intersection Vi is geometrically integral for all i > 0,
(3) and there is an equality codimP(W )(Hi) = codimX(Vi).

The diagram below, depicting the situation, is Cartesian for all i ≥ 0.

Vi = Hi ∩ ρ(X) Hi

X P(W ).

ρ|Vi

ϕi|Vi ϕi

ρ

By [EKM08, Corollary 55.4] there is an equality of maps

(ϕi|Vi)∗ ◦ (ρ|Vi)∗ = ρ∗ ◦ ϕi∗ : CH0(Hi)→ CHi(X).

By [EKM08, Proposition 55.6], one has (ρ|Vi)∗([Hi]) = [Vi] so that

ρ∗([Hi]) = ρ∗ ◦ ϕi∗([Hi]) = (ϕi|Vi)∗ ◦ (ρ|Vi)∗([Hi]) = (ϕi|Vi)∗([Vi]) = [Vi].

Since the pullback respects Chern classes, there is an integer mi so that

[Vi] = ρ∗([Hi]) = ρ∗(c1(OP(W )(1))mi) = c1(ζX(−ind(A)))mi

is contained in CTi(X) as desired. �

We now turn to consider the quotients

Qi(X) = CHi(X)/CTi(X) and Qi(X) = CHi(X)/CTi(X).

From the short exact sequence

0→ Z = CTi(X)→ CHi(X)→ Qi(X)→ 0

it follows that the groups Qi(X) are torsion and there is an inclusion

0→ Tor1(CHi(X),Q/Z)→ Tor1(Qi(X),Q/Z).

The following proposition is the crux of this text.
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Proposition 2.2. Let V ⊂ X be any closed and irreducible subscheme
with dim(V ) = i. If the pushforward along the first projection

CHi(X ×W )→ CHi(X)

has image contained in CTi(X) for any closed subscheme W ( V , then
there is an equality [V ] = [V ′] in Qi(X) for any subscheme V ′ ⊂ X
birationally equivalent to V .

Proof. As V and V ′ are birationally equivalent, there are dense opens
U ⊂ V , U ′ ⊂ V ′, and an isomorphism f : U ′ → U . We write

∆V ⊂ V × V ⊂ X × V and Γf ⊂ V ′ × V ⊂ X × V
for the diagonal and for the closure of the graph of f respectively.

Consider the following diagram.

lim−→CHi(X ×W ) CHi(X × V ) CH0(XF (V )) 0

CHi(X)
lim−→π|X×W∗

π∗

The top row is the colimit of the exact localization sequences with
respect to all open subschemes X × (V \W ) ⊂ X × V . The vertical
arrow is the pushforward along the projection π : X ×V → X and the
diagonal arrow is the colimit of the pushforwards along the projections
π|X×W : X ×W → X as W varies over all closed subschemes W ( V .

Since XF (V ) has an F (V )-rational point, the group CH0(XF (V )) = Z
is infinite cyclic with generator the class of a rational point. Since both
[∆V ] and [Γf ] restrict to the class of a rational point in CH0(XF (V )),
it follows that there is a subscheme W ⊂ V and an element φ of
CHi(X ×W ) so that

π|X×W∗(φ) = π∗([∆V ]− [Γf ]) = [V ]− [V ′].

By assumption, the left side of this equation is contained in CTi(X),
so that [V ] = [V ′] in Qi(X) as claimed. �

Let CH±1 (X) = CH1(X)/ ∼± where ∼± is the equivalence relation
on the set CH1(X) identifying a class with its opposite, i.e. τ ∼± −τ .

Corollary 2.3. Suppose that there exists a collection of curves {Cτ}τ
on X, indexed over the elements τ ∈ CH±1 (X) \ {0}, satisfying:

(1) the class [Cτ ] = τ in CH±1 (X)
(2) for all classes σ, τ ∈ CH±1 (X)\{0}, the curve Cτ is birationally

equivalent with Cσ.

Then CH1(X) = Z is torsion free.
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Proof. The assumptions of Proposition 2.2 hold for V ⊂ X any curve by
[Mac20b, Lemma 3.5]. Hence (2) implies that every curve Cτ represents
the same class in Q1(X). It follows from (1) that every curve contained
in X has the same class in Q1(X). Since there is a curve D ⊂ X whose
rational equivalence class [D] is contained in CT1(X) by Lemma 2.1,
we find that Q1(X) = 0 and CH1(X) = Z. �

3. Constructing curves

Let K ⊂ DA be a separable maximal subfield of the division algebra
underlying A. Let E be the Galois closure of K/F in some separable
closure of F and write G = Gal(E/F ) for the Galois group. The variety
X = SB(A) is a form of Pn twisted along a cocycle representing the
class of A or X in H1(G,PGLn) with n = deg(A). In this section, we
use descent along this cocycle to construct a collection of curves in X.

In the split case X = Pn and n ≥ 2, the Chow group CH1(X) = Z is
infinite cyclic with generator the rational equivalence class of any one
dimensional linear subspace L ⊂ X. The degree of a curve C ⊂ X is
the integer deg(C) so that [C] = deg(C)[L] in CH1(X).

Lemma 3.1. Let X = Pn with n ≥ 2. Then for each integer d ≥ 1
one can choose a curve Cd ⊂ X so that Cd(F ) 6= ∅ and:

(1) the degree of the curve Cd is deg(Cd) = d,
(2) and Cd is birationally equivalent with Ce for all d, e ≥ 1.

Proof. If d = 1, we take Cd = L. If d > 1, consider the composition

P1 → Pd 99K P2 ↪→ Pn

of the dth Veronese embedding, a projection inducing a birational
equivalence of this Veronese curve with its image, and then a linear
inclusion to Pn. Taking Cd to be the image of this composition we get
a collection of curves with the desired properties. �

In the general case X = SB(A), we call the degree of a curve C ⊂ X
the integer deg(C) so that [CK ] = deg(C)[L] in CH1(XK) for any one
dimensional linear subspace L ⊂ XK . This definition is independent of
the field K. The following theorem is due to Karpenko.

Theorem 3.2 ([Mac20a, Corollary 3.8]). Let X = SB(A) be as above.
Assume additionally ind(A) is odd. Let K ⊃ F be a splitting field for
X and write πK : XK → X for the projection map. Then the pullback
gives an identification

π∗KCH1(X) = ind(A)Z ⊂ Z = CH1(XK).

In particular, every curve C ⊂ X has degree a multiple of ind(A).
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Remark 3.3. If ind(A) is even, then it may not be true that ind(A)
divides the degree deg(C) of any curve C ⊂ X = SB(A). Some explicit
examples are given in [Kar96, Theorem 2.5] and [Kar17, Corollary 3.16].

The main theorem of this section is:

Theorem 3.4. Let X = SB(A) as above and suppose dim(X) ≥ 2.
Then for each integer d ≥ 1, one can find a curve Cd ⊂ X so that:

(1) the degree of the curve Cd is deg(Cd) = ind(A)d,
(2) and Cd is birationally equivalent with Ce for all d, e ≥ 1.

The proof of Theorem 3.4 is broken into two lemmas. The idea is to
construct, for each d ≥ 1, a G-orbit of isomorphic degree d curves in
XE whose union is defined over K. These curves descend to a collection
as desired because of the following:

Lemma 3.5. Let H ⊂ G be a subgroup of G and H\G the set of right
cosets of H. Suppose that both {Cg}g∈H\G and {Dg}g∈H\G are G-orbits
of curves in XE labeled so that h(Cg) = Chg and h(Dg) = Dhg for all
h in G. Then the unions⋃

g∈H\G

Cg and
⋃

g∈H\G

Dg

descend to curves C and D on X respectively. Moreover, if Cg is
birationally equivalent with Dg for any g in H\G, then C is birationally
equivalent with D .

Proof. The curves C and D exist by descent so we’re left to show the
last statement. Let fg : Ug → U ′g be an isomorphism between an
open subset Ug ⊂ Cg and an open U ′g ⊂ Dg. For any h in G, define

fh : hg−1(Ug) → hg−1(U ′g) by the formula fh = (hg−1) ◦ fg ◦ (gh−1).
Then the map

Φ̃ =
⋃
g∈G

fg :
⋃

g∈H\G

Cg 99K
⋃

g∈H\G

Dg

is G-equivariant so it descends to a birational map Φ : C 99K D . �

There are two different ways to construct these collections of curves,
depending on the dimension of X, and both are necessary. We assume
that F is infinite in the following Lemmas 3.6 and 3.7.

Lemma 3.6. Assume that ind(A) = [E : F ] = deg(A). Then there
exists a point x in X with residue field F (x) = E so that the E-points
of xE linearly span XE. Labeling the E-points {xg}g∈G of xE so that
h(xg) = xhg for all h ∈ G, one can find curves Cd ⊂ XE for each
integer d ≥ 1 so that:
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(1) the degree of the curve Cd is deg(Cd) = d,
(2) the curve Cd passes through only xg, i.e. Cd ∩ xE = xg,
(3) and Cd is birationally equivalent with Ce for all d, e ≥ 1.

Proof. Note that if x is any point in X with F (x) = E, then the E-
points of xE span a G-invariant linear subspace of XE which must be
all of XE since A is a division algebra.

Now it’s possible to find a collection of curves C ′d ⊂ X satisfying both
(1) and (3) above by Lemma 3.1. To see that we can find a collection
of curves Cd satisfying (1), (2), and (3) we show that, for any fixed
d ≥ 1, there is an automorphism α of XE so that α(C ′d) ∩ xE = xg.
Labeling Cd = α(C ′d) we get the desired collection. For this, we pick
an identification XE

∼= PnE and inductively choose E-rational points
p0, ..., pn so that:

(1) p0 is in C ′d
(2) p1 is in XE \ C ′d
(3) p2 is in XE \ (C ′d ∪ L(p0, p1)) where L(p0, p1) is the line in XE

containing both p0 and p1, ...
(n) and with pn an E-rational point in XE \ (C ′d ∪ L(p0, ..., pn−1))

where L(p0, ..., pn−1) is the linear space in XE of dimension n−1
containing p0, ..., pn−1.

We can then choose a labeling {xi}ni=0 of the E-points of xE so that
xg = x0 and, since xE spans XE linearly, there exists an automorphism
β of XE

∼= PnE defined by

β(x0) = p0, ..., β(xn) = pn.

Taking α = β−1 completes the proof. �

Lemma 3.7. Suppose that deg(A) ≥ 4. Let x be any point in X with
residue field F (x) = K. Let H ⊂ G be the subgroup such that K = EH .
Label the E-points {xg}g∈H\G of xE so that h(xg) = xhg for all h ∈ G.
Then there is a plane Pg = P2

E ⊂ XE so that Pg ∩xE = xg and one can
find curves Cd ⊂ XE for each integer d ≥ 1 so that:

(1) the degree of the curve Cd is deg(Cd) = d,
(2) the curve Cd passes through only xg, i.e. Cd ∩ xE = xg,
(3) and Cd is birationally equivalent with Ce for all d, e ≥ 1.

Proof. Suppose that we can find a plane Pg with the specified property.
By Lemma 3.1 we can find, for each integer d ≥ 1, a curve C ′d ⊂ Pg
satisfying both (1) and (3). Changing by an automorphism α of Pg,
we can move any rational point on C ′d to xg to get a curve Cd = α(C ′d)
that now also satisfies (2). So it suffices to prove that Pg exists.
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Identify XE
∼= P(V ) for an E-vector space V with dim(V ) ≥ 4. The

points {xg}g∈H\G correspond to lines {Lg}g∈H\G in V . Consider the
proper variety

W ⊂ P(V/Lg)×Gr(2, V/Lg)

consisting of pairs (L, P ) where L ⊂ P . Let π1 and π2 be the first and
second projections from this product respectively. The set of planes
Pg ⊂ XE with Pg ∩xE = xg corresponds to the set of E-rational points
in the open complement

Gr(2, V/Lg) \ π2

W ∩ ⋃
h∈(H\G)\{g}

π−11 ({Lh})


which is nonempty because of our assumption dim(V ) ≥ 4. �

Proof of Theorem 3.4. If deg(A) = 3 and A is nonsplit, then there is a
Galois field extension F ⊂ E of degree [E : F ] = 3 with A⊗F E is split
by Wedderburn’s Theorem [KMRT98, Theorem 19.2]. By Lemma 3.6,
for any fixed g in G = Gal(E/F ) and for each integer d ≥ 1, there are
curves Cd

g ⊂ XE so that the following hold:

(1) the degree of the curve Cd
g is deg(Cd

g ) = d,

(2) the curve Cd
g passes through only xg, i.e. Cd

g ∩ xE = xg,

(3) and Cd
g is birationally equivalent with Ce

g for all d, e ≥ 1.

Similarly, if deg(A) ≥ 4 then using Lemma 3.7 one can find curves
Cd
g ⊂ XE with g ∈ H/G satisfying the properties (1), (2), and (3).

In either case, for each d ≥ 1, the Galois orbit of Cd
g gives a set of

curves {Cd
g}g labeled so that h(Cd

g ) = Cd
hg. The union of the curves in

this orbit descends to a curve Cd ⊂ X. The collection of these curves
for varying integers d ≥ 1 has both of the properties:

(1) the degree of Cd is deg(Cd) = ind(A)d,
(2) and Cd is birationally equivalent with Ce for all d, e ≥ 1.

The first property (1) follows from the construction of Cd. The second
property (2) follows from Lemma 3.5. �

With Theorem 3.4 proved, we get a converse to Corollary 2.3.

Corollary 3.8. If ind(A) is odd, then CH1(X) is torsion free only
if there exists a collection of curves {Cτ}τ on X indexed by elements
τ ∈ CH±1 (X) \ {0} and satisfying the properties:

(1) the class [Cτ ] = τ in CH±1 (X)
(2) for all classes σ, τ ∈ CH±1 (X)\{0}, the curve Cτ is birationally

equivalent with Cσ.
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Proof. If CH1(X) is torsion free, then by Theorem 3.2 we can identify
CH1(X) = Z with a generator being any curve having degree ind(A).
A collection of such curves is then given by Theorem 3.4. �

Remark 3.9. The group CH1(X) is known to be torsion free only in a
few cases: if A has almost square-free index [Mer95, Proposition 1.15];
if (ind(A), 8) ≤ 4 and X is generic [Mac20a, Theorem 4.1].
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