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This book is meant to be an exposition on Grothendieck’s K-functor and it’s role
in algebraic geometry. It is not supposed to be a treatise. As such, I've chosen to
exclude mention of higher K-theory, derived categories, and A'-homotopy theory.
I hope that, by doing so, I've made this book more approachable to an interested
algebraic geometer. This book is free to download; it can be found on the author’s
webpage: https://www.eoinmackall.com/.

The book is written with the early-career algebraic-geometer in mind. Ideally, the
audience who will find the book most useful will be those with a solid background
in commutative algebra, who have had some introduction to both scheme theory
and the derived functor language.

References are ordered lexicographically in the format (Chapter.Section.Reference).
Exercises are given at the end of each section. These vary in difficulty and exercises
that are marked with an asterisk indicate that they rely on material or information
outside of what is assumed throughout this book.
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CONVENTIONS

We assume that every ring is unital. Often we denote the identity element of a ring
R by 1 or just by 1 when the ring R is clear from context. We have that 1z = 0Og
if and only if R = 0. All homomorphisms ¢ : R — S between commutative rings
R and S satisfy ¢(1g) = 1g.

The empty scheme is denoted by (). By definition, this is the pair (0, Op) whose
underlying set is the empty set () and whose structure sheaf Oy is characterized by
the assignment Oy(0) = 0.

Throughout this book we reserve the letter k for an arbitrary but fixed field.
Given a field extension F'/k we will say that X is an F-variety if X is a separated
scheme of finite type over F'. When the field F' is clear from context, we’ll simply
say that X is a variety.



INTRODUCTION



K-THEORY AND (G-THEORY OF RINGS

In this chapter we begin our study of K-theory and G-theory in the affine setting.
There are two reasons for treating this material first. For one, it’s useful to have
examples where most of the theory can be worked out with minimal prerequisites.
For the other, we'll prove some theorems here (in the affine case) that will form
the bases for arguments in later chapters (for the general case).

The chapter starts by recalling the notion of a projective module in Section 1.1.
These objects are foundational to algebraic K-theory and will serve as the main
actors in this text. Here we give two characterizations of a projective module: we
first show that a module is finitely generated and projective if and only if it is a
direct summand of a finite rank free module if and only if it is flat and finitely
presented (Theorem 1.1.10); we next show that finitely generated and projective
modules are precisely those modules which are locally free of finite rank on the
corresponding affine scheme (Theorem 1.1.13).

The K-theory ring K (R), associated to a ring R, is introduced in Section 1.2.
We comment on some of the basic properties of K-theory, but we leave a thorough
treatment of its intricate functorial properties to later chapters. In this section we
focus mainly on computations. In order to convince the reader that the K-theory
of a ring is a highly nontrivial object, we also introduce in this section the (possibly
more-familiar) Picard group of a ring as the group which classifies all invertible
modules for the ring (i.e. finitely generated and projective modules of rank one).
We then show how the Picard group of an integral domain R can be realized as
a quotient of K(R) and we use this observation to give some examples of rings R
where K(R) is very much nontrivial.

Section 1.3 serves as a bridge connecting the K-theory from the previous section
to the G-theory of a ring introduced in the following Section 1.4. This section,
which focuses on divisors, is one of the more technical sections in this chapter.
When deciding how to handle the material, I eventually settled on the opinion
that providing a very thorough treatment of this theory in the case of rings could
serve as motivation for the more abstract treatment that’s usually presented for
schemes. Both fractional ideals and Weil divisors are introduced in this section and
their connections to the Picard group and the divisor class group are respectively



explained. Notable theorems of this section include proving that the Picard group
of an integrally closed domain includes into the divisor class group with equality if
and only if the integrally closed domain is locally factorial (Theorem 1.3.27) and
proving that the divisor class group of an integrally closed domain vanishes if and
only if that ring is a unique factorization domain (Corollary 1.3.33).

In Section 1.4, we introduce the G-theory group G(R) associated to a ring R.
The group G(R) is more intimately connected to geometry, and we try to illustrate
this by providing a lesser-known description of G(R) in terms of algebraic cycles.
This description also allows us to show that for an integrally closed domain R, the
group G(R) has, as a canonical subquotient, the divisor class group of R introduced
in the previous section. In some ways, even though the title of this book references
only K-theory, it’s because of these relations to more classical objects in geometry
that the group G(R) is the truly interesting object from the point of view of an
algebraic geometer.

Section 1.5 is effectively the last section of this chapter which is noticeably
related to our aim of studying algebraic geometry. Here we introduce regular rings
and study their homological and algebraic properties. Two monumentous theorems
are proved in this section: the Auslander-Buchsbaum theorem (Theorem 1.5.12)
which characterizes regular local rings as exactly those rings with the property that
every finitely generated module has finite projective dimension, and an analog of
Poincaré duality (Theorem 1.5.3) showing that K (R) and G(R) are isomorphic for
a regular ring R of finite Krull dimension. Still, the content of Section 1.5 differs
quite a bit in nature from that of the previous sections. Some of this difference
is accounted for in the fact that this is the only section in which a majority of
results rely on arguments based in homological algebra. However, even the pacing
of this section is at a different level than most of material in the rest of this chapter
(maybe one can view this as a necessary trade-off relative to the importance of the
results obtained).

Finally, in Section 1.6, we recall the basic structure theorems of semisimple
algebras over a field and we define the K-theory of a noncommutative algebra.
Although this material may seem temporarily out of place for those interested
in studying geometry, these objects will turn out to play an important role in
describing the K-theory of certain varieties such as the quadrics and Severi-Brauer
varieties of later chapters.

I've had access to an invaluable wealth of resources while writing this chapter.
Some of the more standard references which have had a direct impact on this text
include [Weil3], which was very helpful for organizing my thoughts on the material
in Section 1.3 and from which many examples throughout the text originate, and
[Ros94], which is where I first learned most of the proofs here on the K-theory of
Dedekind domains.



Aside from these standard references, the presentation of this chapter has also
been heavily influenced by the lecture notes of Mel Hochster (available online).
In particular, this is where I learned both the proof of Theorem 1.4.19, which
Hochster attributes to M. P. Murthy, and the proof of the Auslander-Buchsbaum
theorem as it’s presented here.



1.1 PROJECTIVE MODULES

Let R be a commutative ring.

Definition 1.1.1. An R-module M is said to be projective if for any pair of
R-modules N and L, and for any diagram

with the bottom row exact, there exists a morphism M — L that fills the dotted
arrow to make a commuting triangle.

Remark 1.1.2. Equivalently, an R-module M is projective if and only if the
functor Hompg (M, —) is right-exact; see Exercise 1.1.1.

There are a number of reasons to be concerned with projective modules (and,
as a word towards the prerequisites for this book, hopefully the reader has already
encountered some of these reasons!). For instance, projective modules can be used
to construct both the Tor®(—, —) and Ext’(—, —) functors of homological algebra.
We will have ample reason to use these functors and their properties throughout
this section (even more-so throughout the rest of the book) and we often will use
them without much explanation.

It’s largely because of their role in homological algebra that projective modules
also appear as central characters in K-theory. However, in contrast to the situation
in homological algebra, we won’t be interested in arbitrary projective modules;
we’ll only be interested in those modules satisfying either of the following finiteness
conditions.

Definition 1.1.3. An R-module M is said to be finitely generated if there is a
short exact sequence of R-modules

R - M — 0

for some nonnegative integer n € Zx.

Definition 1.1.4. An R-module M is said to be finitely presented if there is a
short exact sequence of R-modules

R®™ — R®" 5 M — 0

for some nonnegative integers m,n € Zs.
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Example 1.1.5. The free R-module R®! on an indexing set [ is always projective.
It’s finitely presented if and only if the cardinality #/ of I is finite, i.e. #1 € Z>.
In the case that #I is finite, we say that R®! is free of rank #I and we write
rkr(R¥) = #1 or simply rk(R®') = #1 if no confusion will occur.

Remark 1.1.6. Any finitely presented R-module is necessarily finitely generated.
If R is Noetherian then the converse, that every finitely generated R-module M is
finitely presented, is also true.

Our goal for this section is to set-up basic results on projective modules which
will be used, often implicitly, throughout the remainder of this book. There are
two main theorems proved here. The first, Theorem 1.1.10, gives strong algebraic
restrictions on the class of projective modules. Namely, Theorem 1.1.10 says that
a module is finitely generated and projective if and only if it is finitely presented
and flat if and only if it is a direct summand of a free module of finite rank.

The second main theorem of this section, Theorem 1.1.13, characterizes finitely
generated and projective modules geometrically as precisely those modules that
are locally free of finite rank. This observation, first made by Serre in a geometric
setting [Ser55] and proved in greater generality later by Kaplanksy [Kap58], is key
to setting-up a correspondence between finitely generated projective modules over
a ring and vector bundles on the associated affine scheme.

As a warm-up for the proofs of these theorems, and because we will also need
the statements, we explore some relations between the concepts just introduced.

Lemma 1.1.7. Let R # 0 be a commutative ring. Let L, M, and N be R-modules.
Then the following hold.

(1) If there is a short exact sequence
M— N—=0

with M finitely generated, then N 1is finitely generated.
(2) If there is a short exact sequence

O—L—M-—=N=—=0

with N finitely presented and with M finitely generated, then L is finitely
generated.

Proof. For (1), a surjection R®" — M gives a surjection R — M — N. For (2),
one can extend a finite presentation of NV to a commutative ladder (i.e. so that all
squares commute) with exact rows

R®¥™ —— R%" > N > 0
| L
0 y L >y M > N > 0
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using the projectivity of free modules. The snake lemma then shows that
coker(R®™ — L) = coker(R®" — M).

Since M is finitely generated, the cokernel on the right-hand-side of the equality
above is finitely generated by (1). Thus L is finitely generated as well (a generating
set for L is given by the choice of a finite generating set for the image of R®™ in
L and a choice of lifts of a finite generating set for coker(R®™ — L)). O

Lemma 1.1.8. Let R # 0 be a local ring with maximal ideal m C R and let M be
an R-module. If M is flat and finitely presented, then M 1is free with finite rank.

Proof. Since M is finitely generated, the quotient M/mM is a finite dimensional
R/m-vector space. Let ey, ..., e, be elements of M that form a basis for M/mM.
By Nakayama’s lemma [AMG9, Proposition 2.8], the elements ey, ..., €, generate M
so that there is a short exact sequence induced by sending the ith standard basis
element of R®" to ¢;,

0—K—R"™ = M-—0

and with K the appropriate kernel. Since M is finitely presented, Lemma 1.1.7 (2)
shows that K is finitely generated. Since M is a flat R-module, Tor®(M, R/m) =0
and tensoring by R/m yields an exact sequence

0— K®pR/m— (R®r R/m)* — M @ R/m — 0.

The leftmost R/m-vector space K @z R/m = K/mK = 0 vanishes by construction.
Applying Nakayama’s lemma (again) shows that K = 0; hence M = R®". O]

Lemma 1.1.9. Let R # 0 be a given ring and let R — S be a ring extension.
Then for any R-modules M and N there is a natural homomorphism

HOIDR(M, N) ®RS — HomS(M QSR S,N@R S)

If S is flat over R, and if M is finitely presented, then this homomorphism is an
1somorphism.

Proof. To define the natural map, we can use the universal property of tensor
products. The association

HOHlR(M, N) X S — HOIHS(M SR S,N@R S) (f, S) — S'f

is well-defined and R-bilinear, hence descends to a map from the tensor product.
Assume then that S is flat and M is finitely presented with presentation

R®™ — R®" 5 M — 0.

11



This presentation gives rise to the following commutative ladder with exact rows.

0 — HOHlR(M, N) ®RS _— (N KRR S)EBH e (N Xr S)EBm

L | |

0 —— HomS(M KR S,N@R S) e (N KR S)®n e (N Xpr S)éBm

Here the top row comes from the presentation for M by applying the functor
Hompg(—, N) and then the functor — ®z S; the bottom row comes from applying
the functor — ®g S and then Homg(—, N ®g S). The arrow labeled « exists by a
diagram chase which, if one traces through all the isomorphisms, agrees with the
natural homomorphism considered above. Lastly, to see that « is an isomorphism
one can apply the five lemma. O

Our first structure theorem for projective modules is the following:

Theorem 1.1.10. Let R # 0 be an arbitrary ring and let M be an R-module.
Then the following conditions on M are equivalent:

(1) M is finitely generated and projective,

(2) M is a direct summand of a free R-module R®™ for some n € N,

(3) M is finitely presented and flat as an R-module.

Proof. We're going to show that (1) = (2) = (3) = (1). So assume (1).
Since M is finitely generated there is an exact sequence

R > M —0

with n € N. Since M is projective, this sequence splits (take M = N with the
identity map in Definition 1.1.1). Hence (2) holds.

Now we show (2) = (3). Let P be an R-module so that M & P = R%".
Tensoring any short exact sequence of R-modules

0>A—>B—C—=0,

by M & P gives a commuting ladder like the following.

0 —— A% » Bo" » O ———— 0

0 = AMPARP - BIMOBRP - COMaCRP — 0

Homology of a complex commutes with direct sums of complexes. Hence the top
row is exact, since it is a sum of short exact sequences, and this implies the bottom

12



is exact as well. Using the commutativity of homology and sums once again, it
follows that the sequence

0 =AM - BM —-CM—=0

is exact, proving that M is flat.

To see that M is finitely presented, we note that as summands of R®" both
M and P are finitely generated (apply Lemma 1.1.7 (1) to the projections from
M & P). Concatenating the associated maps

R®™ — 5 R%™ > M
\I
P

gives a finite presentation for M.
Lastly, we show (3) = (1). To do this, we show that the functor Hompg(M, —)
is right-exact (see Remark 1.1.2 and Exercise 1.1.1). So let

2\
o

B—-C—=0
be an exact sequence of R-modules. For each prime ideal p C R, the localized
B, —Cy, —0

is exact as a sequence of R,-modules. Since M is flat and finitely presented, the
localization M, = REB" is a free Ry-module by Lemma 1.1.8. It follows that there
is a commutative diagram

®n ®n
>
B og" s 0

with exact rows for each prime ideal p C R. But, because of Lemma 1.1.9, this
means that the sequence

Hompg(M, B) — Hompg(M,C) — 0

is exact when localized at each prime p C R. Since surjectivity can be checked
locally [AMG69, Proposition 3.9], this completes the proof. O

In the remainder of this section we characterize finitely generated projective
R-modules as exactly those R-modules whose associated quasicoherent sheaves are
locally free of finite rank on Spec(R).
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Lemma 1.1.11. Let R # 0 be a commutative ring and let M be an R-module.
Then the following conditions on M are equivalent:
(1) M is finitely presented and for every prime ideal p C R, the localization M,
is a free Ry-module.
(2) M is finitely presented and for every mazimal ideal m C R, the localization
My, is a free Ry-module.
(3) M is finitely generated and there exist elements f; € R such that the ideal
generated by the f; is all of R, i.e. Y .(f;) = R, and all of the localizations
My, are free Ry,-modules.
(4) There exist elements f; € R such that > _,(f;) = R, and the localizations M;,
are free over Ry, of finite rank.
(5) M s finitely generated, for every prime ideal p C R the localization M, is
free, and the assignment

rkr(M,—) : Spec(R) — Z where tkr(M,p) := kg, (M,)
is locally constant for the Zariski topology on Spec(R).

Proof. The implications (1) = (2) and (3) = (4) are immediate. We’ll show
the remaining implications (2) = (3) and (4) = (5) = (1).
Assume (2). For every maximal ideal m C R we can find an isomorphism

~

REY™ = My,

where r = rk(M, m). Label the standard basis of the free module on the left hand
side of this isomorphism ey, ..., e, and label fi,...; f. their images in M,,. Clearing
denominators by an element g € R\ m if necessary, one can assume that fi, ..., f.
are the images of elements fl, e fT from the localization M — M. The map

a: R - M

defined by sending e, ..., e, to fi,..., f, is an isomorphism after localizing by m.
Since M is finitely generated, the cokernel of « is also finitely generated by Lemma
1.1.7 (1). We can then pick an element ¢ € R\ m that annihilates all of the
generators of coker(«) simultaneously. This means that the localization

. POr
ag.Rg — M,

is surjective and, since M is finitely presented, the kernel of ¢ is finitely generated
by Lemma 1.1.7 (2). As before, pick an element ¢’ € R\ m that annihilates all of
the generators of ker(ay) simultaneously. It follows that ay, is an isomorphism.
Doing this for each maximal ideal m gives a collection of elements which generate
an ideal that is in no maximal ideal and, hence, must be all of R. This shows (3).

14



For (4) = (5), we only need to show that the assumptions of (4) imply
M is finitely generated. First, find an expression 1 = .., r;f; for some nonzero
elements 0 # r; € R. Any such expression must have only finitely many terms, so
we have that [ is a finite set. For each index ¢ € I, we can then specify a finite
generating set {z; ;};es, for My, with the property that each z;; is in the image
of the localization map M — My,. If, for each i € [ and j € J;, we let 7, ; € M
denote a preimage of the element z;;, then the collection of all such elements
{Z;;}i; C M is finite of order say n. Consider the map o : R* — M sending
the standard basis element e; to Z; ;. This map is surjective when localized at any
prime ideal p C R since for each prime ideal p C R there is at least one element
fi with f; € p. So, @ must already be surjective by [AMG9, Proposition 3.8].

Finally, assume (5). We need to show that the assumptions imply M is finitely
presented. We use a very similar argument to the one used in the previous step.
Since M is finitely generated, there is a short exact sequence

0> K—>R"™ 5 M-—=0

with K the appropriate kernel. For each prime ideal p C R the localization of this
sequence at p is split. Fix one such prime ideal p; and pick an f; € R\ p; so that
My, is a free Ry,-module; by Lemma 1.1.7 (1), the module K, is finitely generated
by elements €}, ...,e}, that we can assume lie in the image of the localization
K — Ky. Doing this at every prime ideal p; gives a collection of elements f;
such that > _.(f;) = R. As such, there is a finite subcollection, say fi, ..., f, where

(f1, .., fr) = R. Consider the map
a:R* 5 K,

with ¢ = >""_, m;, defined by sending the standard basis to the elements eé ordered
so that e} < eé-l, if either i < i’ or ¢ =i and j < j'. The cokernel coker(«) of this
map then vanishes when localized at any prime ideal p C R so, it must already be
trivial by [AM69, Proposition 3.8]. Hence M is also finitely-presented. O]

Definition 1.1.12. An R-module M is said to be locally free of finite rank if M
satisfies any of the equivalent conditions of Lemma 1.1.11. We say that M has
constant rank r, or we simply say that M has rank r, and write rkg(M) = r if
rkr(M,p) = r for all prime ideals p C R. When no confusion will occur, we drop
the subscript and write rk(M) for the rank.

Theorem 1.1.13. Let R # 0 be an arbitrary ring and let M # 0 be an R-module.
Then M is locally free of finite rank if and only if M satisfies one of the equivalent
conditions of Theorem 1.1.10.

15



Proof. Suppose that condition (3) of Theorem 1.1.10 holds, i.e. assume that M is
finitely presented and flat. Then by Lemma 1.1.8, the module M is both finitely
presented and has the property that M, is free for all prime ideals p C R, i.e. M
satisfies condition (1) of Lemma 1.1.11.

Conversely, if condition (1) of Lemma 1.1.11 holds then it follows that M is
finitely presented, by assumption, and M is flat because flatness can be checked
locally [AM69, Proposition 3.10], i.e. condition (3) of Theorem 1.1.10 holds. [

EXERCISES FOR SECTION 1.1

1. Let R be aring and let M be an R-module. Show that the functor Hompg(M, —)
is left-exact, i.e. for any exact sequence of R-modules

0—P —-P—P' —0,
the induced sequence
0 — Homg(M, P") — Hompg(M, P) — Homg(M, P")

is an exact sequence of R-modules.
Next, prove that an R-module M is projective if and only if the functor
Hompg (M, —) is also right-exact, i.e. the induced sequence

Hompg(M, P') — Homg(M, P) — Hompg (M, P") — 0
is an exact sequence of R-modules

2. Let R be aring and let P, P’ be two finitely generated and projective R-modules.
Prove that P ®p P’ is a finitely generated and projective R-module.

3. Let R and S be rings and let f : R — S be a ring homomorphism giving S the
structure of an R-module. Show that if P is a finitely generated and projective
R-module, then P ®pz S is a finitely generated and projective S-module. Show,
moreover, that if ¢ C S is a prime ideal then rkr(P, f~1(q)) = rks(P ®r S, q).

4. Let R be a ring and suppose that P and P’ are two finitely generated projective
R-modules. Let f: P — P’ be a morphism of R-modules.
(a) Assume that f is surjective and let K = ker(f). Prove that K is a finitely
generated projective R-module and rkg(P,p) = rkr(K, p) + rkg(P’,p) for
any prime ideal p C R.
(b) Assume that rkg(P,p) = rkg(P’,p) for all prime ideals p C R and assume
that f is a surjection. Show that f is then an isomorphism.

16



(¢) Find an example of a ring R, projective R-modules P, P’ and an injection
f: P — P’ with the property that P’/P is not projective.

5. Let R be aring and I C R an ideal. Let S = R/I. Suppose M is a projective
R-module, and let N be any R-module. Show that the canonical map

HomR(M, N) — HOII15<M XR S, N XR S)
is a surjection.

6. (Open gluing). Let R be a ring and and let {f;}ic; C R be a collection of
elements which generates the unit ideal. Let m > 1 be an integer and assume
that for all pairs i, j € I there is an element ¢;; € GL,,(Ry,y,), i.e. an invertible
m X m-matrix with coefficients in Ry, , so that the following conditions hold
for the collection ¢ = {¢;;}ijer:

. for all = € I we have ¢;; = I,,,, where [,,, is the m x m-identity,

« Qjrdij = Gur inside GL,,(Ry,y, 5, ) for all triples 4,7,k € I.
Now fix any finite subset J C I so that the elements {f;};c; also generate the
unit ideal and consider the R-submodule

Pys C EP(Ry)*™

icJ

defined as the subset

Py = {(x:)ics € P(Ry)®™ : ¢i(x;) = a; for all i, j € J}.

icJ

(a) Prove that, for any (¢, J) as above, the R-module Py ; is finitely generated
and projective.

(b) Suppose that J C I is another finite subset so that the elements { f;}ic
generate all of R. Prove that there is an isomorphism P, ; = P, ;.

(c¢) Suppose that P is an arbitrary finitely generated and projective R-module.
Prove that there are elements {f;}ie; C R generating R so that P = P, ;
for some ¢ = {¢;;}:jer and some suitable subset J C I.

7. (Projective modules and normalization). Let R be an integral domain and write
F = R for the field of fractions of R. Let R be the integral closure of R in
F and let I C R be the ideal I = {x € R: 2R C R} = Anng(R/R). It’s then
immediate to check that I is also an ideal of the ring R since if y € R and & € I
then ryR C R C R so that 2y € I. The ideal I C R C R is often called the
conductor ideal of R in R.
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Suppose now that we're given the data of a triple (P, P, ¢) where P’ is an
R/I-module, P is a R-module, and ¢ : P'®pr R — R/I ®p P is an isomorphism
of R/I = R/I®x R-modules. Let P C P’'x P be the fiber product of R-modules
that makes the following diagram Cartesian.

| |

P —— P @pR —25 R/I@p P

Explicitly P is the R-submodule P = {(z,y) € P’ x P | ¢(z ® 1) = 1 ®@ y} of
the R-module P’ x P.

(a) Suppose that P’ = (R/I)®" and P = R®" are both free modules of rank n,
and note that ¢ can be understood as an isomorphism between free R/I-
modules of rank n. So, by picking a basis, we can identify ¢ € GL,(R/I)
with an invertible n x n-matrix having coefficients in R/I.

Assume that there is an isomorphism, with corresponding invertible
matrix ¢ € GL,(R), which makes the following diagram commute

R@n ¢ ; R@n

| |

(R/1)®" — (R/I)®"

where the vertical arrows are the reduction modulo I. Prove that, under

these assumptions, P is a free R-module of rank n.
(b) Suppose again that P’ = (R/I)®" and P = R®" are both free of rank n.
Use part (a) and the matrix decomposition

o 0\ (I, ¢ I, 0 I, ¢ 0 -1,
0 ¢ot) \0 I,)]\—-ot I, 0 I,)\I, 0 )’

where [, is the n x n-identity matrix, to prove that P is, in this case, a
finitely generated and projective R-module.

(c) Suppose now, for the general case, that P’ and P are an arbitrary finitely
generated and projective R/I-module and finitely generated and projective
R-module respectively. Prove that P is a finitely generated and projective
R-module and show that the canonical R-module homomorphisms

P—P and P—P
induce isomorphisms
PoprR/I=2P and PRrR=P

of R/I-modules and R-modules respectively.

18



(d) Finally, let Py be any fixed finitely generated and projective R-module.
By setting P’ = R/I ®gr Py, setting P = Py @ R, and by letting ¢ be the
canonical isomorphism

P orR=R/I®r Ph®r R=R/I @ P

show that Py = P. Hence every finitely generated and projective R-module
arises from this construction for some triple (P’, P, ¢).

1.2 K-THEORY

We’re now in position to introduce the K-theory of a ring R. The definition here
will be equivalent to the definition for the K-theory of the affine scheme Spec(R)
introduced in Chapter 2.

Definition 1.2.1. Let R be a commutative ring. Let Pr,(R) be the free abelian
group on isomorphism classes of finitely generated projective R-modules, i.e. let

Pyy(R) =EPZ-M

where the index M varies over the choice of a representative for each isomorphism
class of finitely generated projective R-module. Let P.,(R) C Py,(R) be the
subgroup generated by elements M — L — N for each short exact sequence

O—L—M-—=N-—=0

of finitely generated projective R-modules L, M, and N. We define the K-theory
of the ring R as the quotient group K (R) = Pry(R)/Per(R).

Although, in the definition of K (R), we have to make a choice of representative
for each isomorphism class of finitely generated and projective R-module, we will
never distinguish between a finitely generated and projective R-module M and the
chosen representative for the isomorphism class of M in practice. Doing so would
result in too much mental baggage for only a modicum of truth.

We should point out that if M and N are finitely generated and projective
R-modules, then it follows from the canonical exact sequence

O—M-—->MobdN-—-N-—=0

that [M @& N| = [M] + [N] inside K(R). On the other hand, there typically is no
module which represents the difference [M] — [V].
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Additionally, the tensor product M ®pr N of finitely generated and projective
R-modules M, N is a finitely generated and projective R-module (Exercise 1.1.2).
Hence there is an induced endomorphism

M@R—:Pfg<R)—>Pfg(R) NHM@RN

that takes the subgroup P.,(R) into itself due to condition (3) of Theorem 1.1.10.
Similar statements hold for (— ® g M). Combined with the naturality of tensor
products this gives K (R) the structure of a ring:

Corollary 1.2.2. Let R be an arbitrary ring. Then the group K(R) is a ring with
multiplication induced by the tensor product of R-modules. This multiplication is
associative, commutative, and has a unit given by the class [R]. O

The K-theory K(R) of a ring R is a universal object in the following sense:
if there is an abelian group A, an assignment of an element F(M) € A to any
finitely generated and projective R-module M, and if F'(—) is additive on short
exact sequences, then there is a homomorphism from K(R) to A which is initial
among all quotients of Py (R) admitting morphisms to A sending M to F(M).

Example 1.2.3. Let R be any ring and let my(R) be the collection of connected
components of Spec(R). For each of the X; € my(R), choose a prime ideal p; € X;.
For any finitely generated and projective R-module M, the localization M,, is free
and of rank rk(M,,) € Z>o because of Lemma 1.1.8.

i

Define a homomorphism
tk : Prg(R) = Z¥W by M > rk(M,,)e;

where e; is the standard basis element associated to the component X; € my(R).
Then, for any short exact sequence

0O—=L—-M-—=N=0
of finitely generated and projective R-modules L, M, and N one has
rk(M,,) — rk(Ly,) — rk(N,,) = 0.
It follows that the homomorphism rk descends to a (surjective) homomorphism
rk : K (R) — Z5m®)

which we call the rank homomorphism for K(R).
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Remark 1.2.4. For any ring R, the rank homomorphism from K(R) that was
defined in Example 1.2.3 was dependent on a choice of base points p; € Spec(R).
But, because of Lemma 1.1.11 (5), any choice of base points defines the same
homomorphism; in this way we’re justified in calling it the rank homomorphism.

Example 1.2.5. Suppose that R is a PID. By the fundamental theorem of finitely
generated modules over a PID, any finitely generated R-module M is isomorphic
to a direct sum

M=R*"® R/(d) D - ® R/(d,,)

for some elements dy, ..., d,, € R. If M is moreover projective, then each summand
of M must also be finitely generated and projective. In particular, this implies
that any finitely generated and projective R-module is free and, from this fact, we
can compute K(R).

However, we could already compute K (R) even without observing that the R-
module R/(d;) is not projective (when d; is not a unit). If the R-modules R/(d;)
were projective, then from the exact sequences

0= R%% R— R/(d)—0
for each 1 <1 <m, it follows that [R/(d;)] = [R] — [R] = 0. Hence the equality
[M] = [R"] + [R/(d)] + - - - + [R/(dw)] = n[R]
inside of K(R). Since rk([R]) # 0, it follows that K(R) = Z.

The universal nature of K (R) is what makes it both an interesting and difficult
object to study for most rings R. In the remainder of this section, we use this
universality to relate the K-theory K(R) with the Picard group Pic(R), another
object from algebraic geometry which is both interesting and difficult to study.
Along the way, we work out some examples which illustrate how knowledge of the
structure of the Picard group can be used to see that K (R) is typically nontrivial.

Definition 1.2.6. Let R be any commutative ring. An R-module M is said to be
an invertible R-module if M is a locally free module of finite rank and for every
prime ideal p C R one has rk(M,) = 1.

Lemma 1.2.7. Let R be a commutative ring. Then the following statements hold.

(1) For two invertible R-modules M and N, the tensor product M Qg N is an
invertible R-module.

(2) If M is an invertible R-module, then Homg(M, R) is an invertible R-module.
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Proof. An invertible R-module is both finitely generated and projective because of
Theorem 1.1.13, the tensor product of two finitely generated projective modules is
again finitely generated and projective and, for any prime p C R, the localization

(M ®g N)p = My @g, Ny

is a free R,-module of rank rk(M, ®g, N,) = rk(R, ®g, R,) = 1. This proves (1).

For the second claim, we have by Theorem 1.1.13 that for any given invertible
R-module M there exists an R-module N with M & N = R®" for some n > 0.
From the isomorphisms

R®" = Hompg(R®", R) =2 Homgr(M @& N, R) = Homg(M, R) ® Homg(N, R)

we find that Homp (M, R) also satisfies the equivalent conditions of Theorem 1.1.10.
In particular, Homg(M, R) is locally free of finite rank. Now, using Lemma 1.1.9,
we see that for any prime p C R the R,-module

Hompg(M, R), = Hompg, (M,, R,)

has rank rk(Homg, (M,, R,)) = rk(Homg, (R,, R,)) = 1. This proves (2). O

The justification for calling an R-module M an invertible module is explained
by the following lemma.

Lemma 1.2.8. Let R be any commutative ring. Let M be an invertible R-module.
Then the homomorphism

Hompgr(M,R) g M — R defined by f®@m — f(m)
18 an isomorphism.

Proof. For any prime ideal p C R, the given homomorphism localizes over p to
give a morphism

between free R,-modules of the same rank. The localized morphism is surjective,
and therefore an isomorphism; the result follows from [AM69, Proposition 3.9]. [

Definition 1.2.9. Let R be any commutative ring. Write Pic(R) for the set of
isomorphism classes of invertible R-modules. The R-module tensor product gives
Pic(R) the structure of an abelian group which we call the Picard group of R.

The K-theory of R is naturally related to the Picard group of R. To see this,
we introduce the determinant of a locally free R-module.
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Definition 1.2.10. Let R be a commutative ring and M an R-module. The nth
exterior product A" M, for any integer n > 1, is the quotient of nth tensor power
M®™ by the R-submodule generated by elements m; ® - - - ® m,, with m; = m; for
some i # j. If m;®---®m,, is any simple tensor, then we write my A- - - Am,, for its
image in A"M. If M is a locally free R-module of constant finite rank rk(M) = r,
then the determinant of M is the rth exterior product det(M) = A" M.

If M is a free R-module of finite rank rk(M) = r, then for any 1 < k < r the
exterior product A¥M is also free of rank rk(A*M) = (;) In this case, given a
basis e, ..., e, for M, a basis for A¥M is given by the elements ei, \--- Ae;, with
1 <i; <--- < i < n varying over k-tuple subsets of {1,...,n}. For all k > r, we
have A*M = 0 and, by convention, we set A¥M = 0if k < 0 and A°M = R.

Since the formation of exterior products commutes with localization (i.e. since
(A*M); = AR(My) for all f in R), the same statements hold for any R-module
M that is locally free of finite rank. In particular, if M is locally free of constant
finite rank rk(M) = r, then det(M) is locally free of finite rank rk(det(M)) = 1.
Hence det(M) is an invertible R-module. Some additional functorality of exterior
products that we will need are given by the following lemma and proposition.

Lemma 1.2.11. Let R be any commutative ring and let

0L osML NSO

be a short exact sequence of finite rank locally free R-modules. Then, for any
integer k > 1, there is an induced short exact sequence

k
(1.2.12) L@ ANIM — AFM 25 AN S 0.

Here the map AF f is the map uniquely determined by evaluation on a simple wedge
as N f(ma A== Amg) = f(ma) Ao A flmg).

Proof. The map L ® A¥"'M — AFM is defined by sending a pure tensor [ ® n
to the wedge [ A n. It’s clear that AFf is surjective since f is surjective. Also,
the sequence (1.2.12) is immediately observable to be a complex. To see that this
complex is exact, it suffices to prove exactness only in the case when L, M, and
N are free since then the claim will follow by localizing at all prime ideals p C R.

In the case when L, M, and N are free, we choose a basis ey, ..., &, for N and
respective lifts ey, ...,e, € M. We also choose a basis fi,..., f, for L and note
that fi,..., fp, €1,...,e, form a basis for M. Now a right-inverse to A*f is gotten
by sending €;, A --- A¢€;, to e, A---Ae;. This naturally decomposes the free
R-module A*M into a sum A*M = K & AFN where K is the kernel of AFf. Here
K is the R-submodule of A*M generated by wedges f; A7 for some n € AF1M.
The claim follows. []
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Remark 1.2.13. In the statement of Lemma 1.2.11, it is not necessary that L, M,
and N are locally free of finite rank. The statement holds for arbitrary R-modules
L, M, and N by [Bou74, III §7.2 Proposition 3].

Proposition 1.2.14. Let R be any commutative ring and let
0O—+L—->M—N=0

be a short exact sequence of finite rank locally free R-modules. Then there ezists a
filtration Fo(A"M) of N"M by R-submodules

AL = F,(N"M) C F,,_1(N"M) C --- C Fo(N"M) = \N"M
and canonical isomorphisms
Vi : NLR AN 5 Fy(N"M) ) Fy 1 (N"M)
for all 0 < i <n.

Proof. For each i > 0, define F;(A"M) to be the R-submodule of A" M generated
by the elements y; A--- Ay; Az A+ A z,—; where the y; belong to L C M and z;
are arbitrary. Let Z, ..., T generate N and choose respective preimages x1, ..., T
in M. Define a map

Vi : NNL@ AN — Fy(A"M)/Fyp (N M)
by the formula
1/Ji(a1/\---/\ai®l~)1/\--~/\l~)n_i):al/\---/\ai/\bl/\---/\bn_i

where if by = ¢4 then b, = Y. ¢;x;. The map 1; is well-defined and fits
naturally into the commutative diagram below with exact rows.

NL @ (L&A M) — NL @AM S AL @ AniN 0

! ! |

0 — Eq(A"M) ——— Fy(A"M) —— F(A"M)/Fq (A"M) — 0

The top row of this diagram is gotten from the sequence (1.2.12) of Lemma 1.2.11
by tensoring with the flat R-module A’L.

For later purposes, note that the map 1; is canonical in that it also doesn’t
depend on the choice of lifts xq, ..., x; since any other element x; lifting Z; has the
property that xs — x; is contained in L.

Now the fact that 1); is an isomorphism can be seen locally. After localization
at any prime ideal p C R, the morphism 1); is a surjection between free R,-modules
of the same finite rank. O
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As immediate corollaries we get:

Corollary 1.2.15. Let R be a commutative ring, and let
0O0—+L—-M-—=N=0

be a short exact sequence of finite rank locally free sheaves of constant rank, so
n=1k(M), k =rk(L) and n — k = rk(N). Then det(M) = det(L) ® det(N).

Proof. For all i # k, the module AL @ A" N = 0 by rank considerations. In the
notation of Proposition 1.2.14, this implies F;(A"M) = A"M ifi < k, F;(A\"M) =0
if i > k, and 1)y, gives an isomorphism between det(M) and det(L) ® det(N). O

Corollary 1.2.16. Let R be any commutative ring and assume that R has a unique
minimal prime ideal. Then the determinant extends to a group homomorphism

det : K(R) — Pic(R)
defined by det([M]) = [det(M)].

Proof. If p C R is the unique minimal prime ideal of R, then for any finite rank
locally free R-module M, the rank function rk(M, —) : Spec(R) — Z of Lemma
1.1.11 is constant and determined by the value rk(M, p). In particular, this means
that for any short exact sequence of locally free R-modules of finite rank

0—-L—>M-—N—0,

the conditions of Corollary 1.2.15 are satisfied (compare with Example 1.2.3).
Hence the assignment sending a locally free R-module M to det(M) descends to
a morphism from K (R). O

The determinant homomorphism of Corollary 1.2.16 is always a surjection since
the determinant of an invertible R-module M is M itself. By the same reasoning,
there is an injective homomorphism from Pic(R) to the group of units of the ring
K(R), sending the class of an invertible module to itself, giving Pic(R) C K(R)*.
In these two ways, we can view K(R) as a more complicated object than Pic(R).

Nonetheless, it’s already a difficult problem to find examples of rings R where
Pic(R) can be computed precisely. The following is an example where Pic(R) # 0;
the proof here is from Lam’s book on rings and modules [Lam99, Example 2.19B].

Example 1.2.17. Let k be any field such that —1 isn’t the square of any element
from k (e.g. we could have k = R; note also that the characteristic of k isn’t 2).
Set R = k[z,y]/(z* +y* — 1) and let (z,y — 1) = I C R be the ideal generated
by the two elements z and y — 1. We’ll show here that [ is a nontrivial invertible
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R-module, and hence Pic(R) # 0. (In fact we’ll see, in Example 3.2.1 below, that
Pic(R) = Z/27 with [I] being the nontrivial generator). It follows from Corollary
1.2.16 that the class [I] € K(R) is nonzero (and also [/] # n[R] for any n € Z).

To start, we observe that R is a domain. Indeed, the element y—1 is irreducible
inside k[y|, and hence prime since k[y| is a unique factorization domain (UFD).
So, if we considered the element q(z) = z* + y? — 1 inside k[y][z] = k[z,y] then we
could apply Eisenstein’s criterion [DF04, §9.4, Proposition 13] (noting that 3> — 1
is contained in the ideal (y — 1) but not the ideal (y — 1)? of k[y]) to see that q(x)
is irreducible inside k[z,y]. Since klx,y] is also a UFD, it follows that the ring R
(which is the quotient of a UFD by an ideal generated by an irreducible element,
i.e. a prime ideal) is also a domain.

We can show that [ = (z,y — 1) is an invertible R-module by utilizing Lemma
1.1.11. That is to say, we have R = (y — 1,y + 1) and if we can find isomorphisms

Iy—l = Ry—l and Iy+1 = Ry+1

then the lemma says that I is an invertible R-module. For the first isomorphism,
we observe that the inclusion I C R becomes an isomorphism after localization
at the multiplicative subset generated by y — 1. For the second isomorphism, it
suffices to note that I, is a principal ideal of R, generated by z/(y + 1).

To see that I is a nontrivial invertible R-module, we assume for a contradiction
that there is an isomorphism R = I and denote by f € [ a principal generator for
this R-module. This means that we can find elements g, h € R and equalities

(1.2.18) fg=x and fh=y—1.

If we denote the fraction field of R by F' = R(g, then the inclusion k[y] C R
induces an inclusion k(y) C F realizing F' as a finite algebraic extension of k(y).
More precisely, the ring map

¢: k(y)[z] = F defined by z+— z

has kernel containing the ideal generated by 2% +y? — 1. By Gauss’s lemma [DF04,
§9.3, Proposition 5], using that k[y] is a UFD, the polynomial z* + y? — 1 remains
irreducible in k(y)[x] so that the quotient k(y)[z]/(z*+y*—1) is a finite extension
of the field k(y). Since R is contained in the image Im(¢), which is a field, it
follows that F' = k(y)[z]/(z* + y* — 1). Now we can use the existence of the field
norm

Np/k(y) P — k?(y)x

along with the equalities of (1.2.18) to get a contradiction. (If you haven’t seen it
before, the field norm is defined by sending an element a € F* to the determinant
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det(m,) of the k(y)-linear transformation m, : F' — F which sends an element x
to the product m,(x) = ax. The field norm is a group homomorphism since

det(m;) =1 and det(m,s) = det(m, o myy) = det(m,) - det(my) ™"

for all a,b € F'*.)

The ring R is a free k[y]-module with generators 1 and = so we can write
f = fo+ fix for some elements fy, fi € k[y| necessarily not both equal to zero.
Taking the norm of f shows

N (f) = Nepw) (o + frz) = f§ — A=) fF = fo + v fi — /¢

with the latter a nonzero polynomial in y of even degree (this is where we use the
assumption that —1 isn’t the square of an element from k, so the leading terms
of f¢ and y*f? don’t cancel). However, taking the norm of the expressions from
(1.2.18) and subtracting gives

Neski) () (Nesre)(9) = Negr) (h)) = Nepey(£9) = Negwe) (Fh)
= Nrry)(T) = Negwg)(y — 1)
=—(1-y")—(y—1)
=2(y —1).

Since Np/i(y)(g) and Nk (h) are contained in kfy], and since 2(y — 1) can’t be
a multiple inside k[y] of the nonzero polynomial Npg/k,)(f) of even degree in y,
we've reached a contradiction to our assumption R = [.

Example 1.2.19. In this example, we show how the computation of Example
1.2.17 can be used to get examples of higher dimension as well. Let k£ be any field
with —1 ¢ k*? as before. Set R = k[x,y,2]/(zy—2z*+1) and let (z,z—1) =1 C R
be the ideal generated by the two elements x and z — 1. As in Example 1.2.17, we
can show that [ is a nontrivial invertible R-module, so that Pic(R) # 0. Later on,
in Exercise 1.3.7, we’ll show that Pic(R) = Z with I a nontrivial generator. In this
case X = Spec(R) is a one-sheeted hyperboloid in A? and the closed subscheme
L = Spec(R/I) of X is the line in the y-direction at x = 0 and z = 1.

Before we begin proving the above statements, we first note that R is a domain.
Indeed, the element zy + 1 is an irreducible element k[x,y], which can be checked
directly, so the ideal (zy + 1) is prime in k[z,y] since this latter ring is a unique
factorization domain (UFD). The polynomial xy — 22+ 1, considered as an element
in k[z,y][z], is therefore irreducible by Eisenstein’s criterion. As k[z,y, 2] is also a
UFD, this proves that R is a domain as claimed.

To see that I is an invertible R-module, we utilize Lemma 1.1.11. That is, we
observe R = (2 — 1,z + 1) so that it suffices to find isomorphisms

I..=R.,y and I.,1 =R

27



Figure 1.1: The vanishing locus V (xzy — 22 4+ 1) inside A3

The inclusion I C R becomes an isomorphism after localizing at the multiplicative
set generated by z — 1, handling this case. For the other isomorphism, we note
that inside the domain R, the ideal I, is principal and generated by z/(z+1).

Lastly, we need to show that I isn’t itself isomorphic with R. Let J C R be
the ideal J = (z + y) and write S = R/J. Then we have isomorphisms

S = klz,y,2]/(vy — 22 + 1,0 +y) = k[z,2]/(2® + 2> — 1).

The S-module I ®g S is invertible and isomorphic with the ideal I = (z,2—1) C S.
Indeed, the composition

I®QrS = Rops 2202 g

has image I, so that there is a surjection ¢ : I ®z S — I. Localized at any prime
ideal p C S, the map v, is a surjection between free S,-modules of rank one.
This implies that ¢ is an isomorphism locally, hence also globally. According to
Example 1.2.17, the ideal [ isn’t isomorphic with S, completing the proof.
EXERCISES FOR SECTION 1.2

1. Assume that (R, m) is a nonzero local ring. Find an isomorphism K(R) = Z.

2. Let k be a field and t an indeterminate. Determine each of the rings K (k[t]),
K(k[t,t™"]), and K (k[[¢]]).

3. Let f: R — S be a homomorphism between rings R and S. Use Exercise 1.1.3
to show that the assignment

resh : K(R) — K(S)  [M]— [M ®g S|
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is a well-defined ring homomorphism. Show also that if g : S — T is another

S T

ring homomorphism, then res} o resy, = resk.

4. Let R be a commutative ring. This exercise shows that the group of relations
P..(R) C Ps4(R) can be modified without changing the quotient K (R).

(a)

Show that a long exact sequence of finitely generated projective R-modules
0—=+N,—:--—>N —0

can be split into a collection of short exact sequences
0= K, =N, — K;_1 —0

with both K; and K;_; finitely generated and projective R-modules (use
Exercise 1.1.4).
Let P, (R) C Pry(R) be the subgroup generated by elements

> (-1)'N;

i>1

for every long exact sequence as above. Define K'(R) := Py,(R)/Pes(R).
Show that the canonical morphism

K(R) = K'(R)  [M]— [M]

is an isomorphism.

5. Let R be a commutative ring and define P, s(R) as the free abelian group
generated by isomorphism classes of all projective R-modules (not necessarily
finitely generated). Define P., ;,(R) to be the subgroup of P, ¢(R) generated
by those elements M — N — L coming from short exact sequences

O—L—M-—N-—=0

of projective R-modules. Show that [R] = 0 in the quotient P,f(R)/Pey ins(R).

6. Let R be a ring with Spec(R) having a connected underlying topological space.
Prove that if P is a finite rank locally free R-module, then P has constant rank.
Verify that the morphism det : K(R) — Pic(R) defined as in Corollary 1.2.16
is well-defined for such rings. Extend the construction of the determinant map
to an arbitrary ring R with possibly disconnected spectrum Spec(R).
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7. Suppose f: R — S is a homomorphism of rings. Show that the assignment
res?, : Pic(R) — Pic(S)  [I]+— [ ®g 5]

is a well-defined group homomorphism with the property that, if g : S — T
is another ring homomorphism then resk o res, = resh. Show that, moreover,

these morphisms fit into a commutative square

S
resR

K(R) —%5 K(S)

ldet ldet

rCSS
Pic(R) — Pic(9S)

with the morphisms from Exercise 1.2.3.

8. Let R be any commutative ring. For any integer n > 0, we write M,(R) for
the ring of n x n-matrices with coefficients in R. An element e in a (possibly
noncommutative) ring S is an idempotent if there is an equality e? = e.

(a) Show that every idempotent e € M, (R) determines a finitely generated
projective R-module P, as the image submodule P, = ¢(R®") C R%".
Conversely, every finitely generated projective R-module P is isomorphic
to some P, for some idempotent e in M, (R) for some n > 1.

(b) Assume that I C R is an ideal contained in the Jacobson radical of R, i.e.
I is an ideal contained in every maximal ideal of R. Use Exercise 1.1.5
to show that if M and N are two finitely generated projective R-modules
which admit a surjection (resp. an isomorphism) f : M/IM — N/IN of
R/I-modules, then there is a surjection (resp. an isomorphism) f : M — N
of R-modules which reduces modulo I to f.

(c) Suppose that I is also nilpotent, so IV = 0 for some large N > 1, and let
e € M,(R/I) be a given idempotent determining a finitely generated and
projective R/I-module P.. Prove there exists an idempotent ¢ € M, (R)
so that € = e (mod I). The R-module P; determined by any such lift é
has the property that P; ® g R/I = P..

(Hint: let f be any lift of e to M,,(R). Then (f? — f)¥ = 0 so that

N N

0= (V)= S () e

k=0 k=0

Setting —h = S0 (—=1)N* (],X)fk_1 gives 0 = fN — fN*1h. Now if we set
¢ = fVhY then since hf = fh we have

'éQ — fZNhQN — fN—l(fN+1h)h2N—1 — f2N—1h2N—1 — .= hoN — é

It remains to show that é = e modulo I.)

30



(d) Use parts (a) - (c) above to show that, if R is any commutative ring and
if I C R is any nilpotent ideal, then the map

resit/" . K(R) — K(R/I)

from Exercise 1.2.3 is an isomorphism.
(e)* Extend part (c) above and show that, if R is any commutative ring which
is complete with respect to an ideal I, then the map

resit/’ . K(R) — K(R/I)

from Exercise 1.2.3 is an isomorphism.

9. Suppose that we're in the set-up of Exercise 1.1.7, i.e. we have (R, R, F,I) with
R a domain, R the integral closure of R in the fraction field F' = R and I the
conductor ideal of R C R. Prove that there is an exact sequence

1 — R* = R*<(R/I)* — (R/I)* — Pic(R) — Pic(R)xPic(R/I) — Pic(R/I)

where the maps are defined as:
« R — R* x (R/I)* sends z to (x,z)
« R* x (R/I)* — (R/I)* sends (x,y) to zy~!
. (R/I)* — Pic(R) sends a unit x to the class of the invertible R-module
constructed as in Exercise 1.1.7 for the triple (R/I, R, x)

. Pic(R) — Pic(R) x Pic(R/I) sends [I] to the pair <resR([I]),resg/I([I])>

+ Pic(R) x Pic(R/I) — Pic(R/I) sends (1], [J]) to res/" ([I]) — resy); ([.]).
10. Let k be a field and let R be the coordinate ring R = k[z,y]/(y* — 2®) of the
affine cuspidal cubic curve.
(a) Show that the k-algebra homomorphism R — k[t] defined by sending z to
t? and y to ¢ is an injection with image the subring k[t?, 3] C k[t]. Argue
that k[t] is the integral closure of R inside the fraction field k().
(b) Use Exercise 1.2.9 to construct an isomorphism of groups Pic(R) = k.
Given an element a € k, can you describe the isomorphism class of the
invertible R-module corresponding to a?

11. Let k be a field and let R be the coordinate ring R = k[x,y]/(y* — 2® — %) of
the affine nodal cubic curve.
(a) Show that the k-algebra homomorphism R — k[t] which sends z to % — 1
and y to 3 —t is an injection with image the subring k[t? — 1, % —t] C k[t].
Argue that k[t] is the integral closure of R inside the fraction field k(t).
(b) Use Exercise 1.2.9 to construct an isomorphism of groups Pic(R) = k*.
Given an element u € k£, can you describe the isomorphism class of the
invertible R-module corresponding to u?
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Figure 1.2: The line bundle corresponding to —1 € £* on the nodal cubic

1.3 DIVISORS

In this section, we develop the algebraic theory of divisors for some types of rings.
(Depending on the type of divisor, the assumptions that we add to the ring will be
more-or-less restrictive. In the broadest setting, we work with integral domains;
in the most restrictive setting, we focus on integrally closed Noetherian domains.)
Essentially all of the terminology and ideas presented here will be carried over to
the setting of a more general scheme later in this book and, when we do this, it
will be clear that the definitions and constructions of this section are simply the
algebraic formulations for the theory in the case of the corresponding affine scheme.
However, most of the subtle nuances of the theory can already be understood
through study of this commutative algebra.

There are two types of divisors that we focus on in this book. The first type that
appear below are called Cartier divisors which, in the case of rings, are equivalent
with certain modules called fractional ideals. Instead of giving the abstract (and
unmotivated) definition of a Cartier divisor, and building the theory from there, we
start from the equivalent notion of a fractional ideal and we derive the relationship
between these modules and the Picard group in the case of an integral domain.
The formal definition of a Cartier divisor, which forms the basis for the theory in
the case of a general scheme, is given in the exercises along with some exploration
of the equivalence to fractional ideals.

The second type of divisor appearing in this section is called a Weil divisor.
These divisors are intimately connected with geometry and, even in the case of an
affine scheme, it’s difficult to formulate the theory without relying on the geometric
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ideas from which they originate. In order to simplify some considerable amount of
technical detail, we will typically work with Weil divisors only in a more restricted
setting (e.g. Noetherian domains). Here we introduce and study the divisor class
group, which is a kind of analog of the Picard group defined using Weil divisors
(although, the divisor class group and the Picard group convey a considerable
amount of inherently different information). We end by comparing the two notions
of Weil divisors and Cartier divisors (in our guise of fractional ideals), by comparing
the Picard group to the divisor class group, and by giving some applications.

FRACTIONAL IDEALS AND THE PICARD GROUP

Definition 1.3.1. Let R be an integral domain and let F' = R(g) be the field of
fractions of R. An R-submodule I C F'is called a fractional ideal for R if I # 0
and if there exists an element f € R\ {0} giving containment

fIl={fgeF:gel}CR.

Any nonzero ideal J C R can be considered a fractional ideal via the inclusion
J C R C F; a fractional ideal I is called an integral fractional ideal if it is the
image of an ideal J C R.

Remark 1.3.2. If R is a Noetherian domain with fraction field F', then an R-
submodule I # 0 of F'is a fractional ideal for R if and only if [ is finitely generated.

If I and J are two fractional ideals of an integral domain R, then one can define
the fractional ideal product of I and J as

IJ:{Zfigi:fieI, giEJ}CF.

This is also a fractional ideal for R (if fiI C R and foJ C R then f,f3IJ C R).
It’s easy to check that the fractional ideal product is associative and commutative.
Moreover if I,J C R are two ideals, then the fractional ideal product of I and J
agrees with the ideal product of I and J.

For a fractional ideal I C F' for R, one can also define a fractional ideal inverse

I''={feF:fICR}
as the largest R-submodule of F' such that /7' C R.

Lemma 1.3.3. Let R be an integral domain with F' = R its field of fractions.
Then the following statements are true.

(1) If I C F is a fractional ideal for R, then I~ is a fractional ideal for R.

(2) If I C F is a fractional ideal for R, then IR =1 = RI.
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Proof. To see that I™! is a fractional ideal for R, let f € R\ {0} be an element such
that fI C R. Since fI is an R-submodule of R, we have that fI = (ay,as,...) is
an ideal of R generated by elements 0 # a1, as, ... € R. We claim that a;1~! C R.
Indeed, for any g € I~ we have gI C R so that (a;f')g € Rasa;f~' € I. Hence

ag = (af")fg € R.

Since g was arbitrary, we find a; /! C R as claimed.
For (2) wenote I =1-1 C RI C I as I is an R-module. Similarly Rl = 1. [

A fractional ideal I C F for R is called an invertible fractional ideal if there is
an equality //-!' = R = I~'I. If I is an invertible fractional ideal, then so is /.
Indeed, since IT7' C R we have I C (I7')~!. But we also have

(IHt'=RUHY''=(urhHaHt=10'IrHHYcIR=1

so that I = (I"')™" and I"'(I"*)"! = R. A similar argument shows if I,J C F'
are two invertible fractional ideals, then (I.J)~! = I='J~! and the fractional ideal
product IJ is invertible as well.

If we denote by I, (R) the set of all invertible fractional ideals for the integral
domain R, then the above shows that If,(R) has the structure of an abelian group
with the product of two fractional ideals given by the fractional ideal product.
We'd like to now compare the group Iy, (R) of all invertible fractional ideals with
the group Pic(R) of isomorphism classes of invertible R-modules. Our first order
of business, in this regard, will be to prove the following proposition summarizing
the main relation between the two types of R-modules.

Proposition 1.3.4. Let R be a domain with fraction field F'. Suppose that I C F
s an invertible fractional ideal for R. Then I is invertible as an R-module.

Conversely, if M is an invertible R-module, then there exists a fractional ideal
I C F and an R-module isomorphism M = 1.

The proof of Proposition 1.3.4 uses the next three lemmas which may have use
outside the statement of the proposition.

Lemma 1.3.5. Let R be an integral domain with fraction field F'. Suppose I C F
1s an invertible fractional ideal for R. Then I is locally free of finite rank.

Proof. Specifically, we show that if I C F' is an invertible fractional ideal for R,
then I satisfies condition (2) of Theorem 1.1.10 so that I is a finitely generated and
projective R-module. From the definition, since I is invertible we have I1~! = R.
This means that there is an expression in F

1:Zfzgz fiel, giel_lforalllgign.
=1
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Define a map ¢ : R®™ — I by sending the standard basis element e; to f;. Define
amap ¢ : I — R®" by sending f € I to the element (fg1,..., fg,). Both ¢ and
1 are R-module homomorphisms and, for any f € I, we have

dpov(f)=o((for, - fom)=fnfi+ -+ fofa=Ff 1=Ff
Thus v realizes I as a direct summand of the free R-module R®" as claimed. [J

Lemma 1.3.6. Let R be any commutative ring and let M be a flat R-module.
Then the multiplication map

ITQpr M — IM re@me=rm

s an isomorphism for every ideal I C R.

Proof. The map I ® p M — I M is always surjective, regardless if M is flat or not.
We show if M is flat then this map is also injective. To prove this, we note that
there’s a commutative diagram with exact rows

0 —— I®g M - —— RIrM —— R/IQr M —— 0

! ! |

0 — IM > M > M/IM —— 0

with vertical arrows induced by multiplication maps (sending a pure tensor r ® m
to the element rm). The middle vertical arrow in this diagram is an isomorphism,
hence the left vertical arrow is too. O

Lemma 1.3.7. Let R be a domain with fraction field F' = Ryy. Let I,J C F
be two fractional ideals for R and assume that I is an invertible fractional ideal.
Then the canonical surjective map

I®rJ —1J f®g— fg
1s an isomorphism of R-modules.

Proof. Since I is an invertible fractional ideal, we have that [ is finite rank locally
free by Lemma 1.3.5, hence flat as an R-module. Let f € R\ {0} be an element
so that fJ C R. Multiplication by f induces an R-module isomorphism J = fJ.
This gives a commutative diagram of R-module homomorphisms

I ®rJ —— 1J

| J

[®p fJ —— I(fJ) = fIJ
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where the horizontal arrows are the morphisms gotten from multiplication of simple
tensors and the vertical arrows are multiplication by f. Since fJ C R is an ideal,
the bottom horizontal arrow is an isomorphism by Lemma 1.3.6. Hence the top
horizontal arrow is an isomorphism as well. O]

Proof of Proposition 1.5./. The first statement of the proposition follows nearly
immediately from the above lemmas. If I C F' is an invertible fractional ideal
for R, then both I and I~! are locally free R-modules of finite rank by Lemma
1.3.5. To check the rank of I, let p C R be any prime ideal. Then localizing the
isomorphism of Lemma 1.3.7 yields an isomorphism

I, ®r, Iy =@l ), =), =R,

It follows that rkg,(/,) = 1. Hence [ is invertible as an R-module.
Conversely, if M is an invertible R-module then M is finitely presented and
flat. Tensoring the inclusion R C F' with M gives a series of R-module maps

M=M@rRCMrF=F

with the isomorphism M ®r F' = M ®g Ry = My = F coming from the fact
that R is locally everywhere of rank 1. Since M is also finitely generated, we can
find an element f € R\ {0} such that fM C R under this inclusion. O

Example 1.3.8. Let k be a field with —1 ¢ k*?, and set R = k[z, y]/(z®> +y*—1).
We saw that the ideal I = (x,y — 1) C R determined a nonzero element of Pic(R)
in Example 1.2.17. Because of Lemma 1.3.6, there is an isomorphism [ ®p I = I?
and I? = (2%, 2(y — 1),y*> — 2y + 1) = (y — 1) is principal. Hence the subgroup
generated by [I] inside Pic(R) is isomorphic with Z/27.

Every fractional ideal for an integral domain R has the structure of an invertible
R-module but, not every pair of distinct fractional ideals I, J C F' = R will have
distinct invertible R-module structures. For example, if (f) C R is a principal ideal
then (f) and R are distinct fractional ideals. However, as R-modules R = (f) via
the multiplication-by-f map. We can make precise this difference by introducing;:

Definition 1.3.9. Let R be an integral domain with field of fractions F' = Rg).
A fractional ideal I C F' is a principal fractional ideal if I is an R-submodule

fR={fr:reR}CF
for some element f € F'\ {0}.

A principal fractional ideal fR is invertible with ideal inverse (fR)~' = (1/f)R.
We write I,-(R) C I, (R) for the subgroup of all principal fractional ideals.
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Theorem 1.3.10. Let R be an integral domain with field of fractions F' = Rg).
Then the sequence of group homomorphisms

(1.3.11) 1 R — < 225 1 () 229, Pic(R) —» 1

18 exact.

Proof. The maps in (1.3.11) are mostly all canonically defined. The two labeled
maps are [’ — I;.(R), which sends an element f to the principal fractional ideal
fR and is readily checked to be a homomorphism, and the map I, (R) — Pic(R),
sending a fractional ideal I to the isomorphism class of I as an R-module which is
a homomorphism by Lemma 1.3.7. With everything defined, we’ll check exactness
at each spot.

Clearly the inclusion of units R* C F'* is injective. The map F* — I,(R) has
kernel exactly those elements f € F'* so that fR = R, i.e. those elements f € F'*
with both f € R and such that there is some g € R with fg = 1. Hence f € R*.

Surjectivity of I,(R) — Pic(R) follows from the converse of Proposition 1.3.4.
Lastly, note that there is an isomorphism

Hompg(R,I) =1 defined by f +— f(1)

so that if a fractional ideal I € I,.(R) is isomorphic with R as an R-module via a
map f: R— I, then I = f(1)R and f(1) € I C F. O

For a Dedekind domain, the structure of the group I,(R) is even more explicit.
We'll use the following observations to describe the K-theory K (R) of a Dedekind
domain completely in Section 1.5 below.

Lemma 1.3.12. Let R be a Noetherian domain with F' = R o) its field of fractions.
Let I, J C F be two fractional ideals for R and fix a prime ideal p C R. Then:
(1) The localization
I, =1®r R, CF®rRy=F

is a fractional ideal for R,.
(2) Localization commutes with fractional ideal products (I1.J), = Iy J,.
(3) Localization commutes with fractional ideal inverses (I™1), = (I,)™'.

Proof. Let f € R\ {0} be an element with fI C R. Then fI, C R, proving (1).
The proof of (2) is straightforward. For (3), if f € F' is such that fI C R and if
g € R\ p, then

(f/g)l < (1/g)R C Ry.
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Hence (I71), C (I,)~'. To prove the converse, suppose that I is generated as an
R-module by elements a4, ...,a, € F. If f € F is such that fI, C R, then there
are equalities
fal = T_1> 7fan: r_n
S1 Sn
for some elements rq, ..., 7, € Rand sy, ..., s, € R\p. Setting s = s; - - - s,, it follows
that (sf)a; € Rfor all i = 1,...,n. In other words, sf € ™" and f € (I"!),. O

Lemma 1.3.13. Let R be a Dedekind domain (i.e. an integrally closed Noetherian
domain of Krull dimension Kr.dim(R) = 1) and let F = Ry be its fraction field.
If I C F is a fractional ideal for R, then I is invertible, i.e. II7' = R.

Proof. Fix a nonzero prime ideal p C R and note that the local ring R, is a DVR.
Let m be a uniformizing parameter for R, and let v, be the associated valuation.
Let f € R be such that fI C R. Then fI, C R, is an ideal of R, and so

fly=p"= (")

for some r > 0. Hence I, is generated as an R,-module by 7"~* where s = v,(f).
In particular, 757" € (I,)~" so that

(11, = [le;l =Ry

because of Lemma 1.3.12. As this is true for each nonzero prime ideal p C R, and
hence for every maximal ideal, we must have that the ideal 11~ C R is contained
in no maximal ideal of R, i.e. [I~! = R. O

Remark 1.3.14. One consequence of the proof of Lemma 1.3.13, which is also
interesting, is that if I is a fractional ideal for a discrete valuation ring R with
maximal ideal m and with uniformizer 7, then I = 7" R for some integer r € Z.
So, not only is every ideal of R generated by a power of 7 but, every fractional
ideal is also.

Remark 1.3.15. Every fractional ideal I for a Dedekind domain R can uniquely
be identified as a product of nonzero prime ideals of R with integer exponents: if
f € R\ {0} is an element with fI C R then there are unique decompositions

(f)=pi"-py and  fI=qi" g,
as products of prime ideals by [AM69, Corollary 9.4] which allows us to write
T=q gl ™ e p,
Further, this identification is independent of the choice of f: for any nonzero prime
ideal p C R with uniformizing parameter m € pR, and associated valuation v,

the power of p that appears in the expansion for I above is determined by the
vy-valuation of any generator for the R,-module I,.
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Therefore, in the case of a Dedekind domain, essentially all of the information
contained in the Picard group should already be obtainable from the collection of
integral fractional ideals. The following proposition confirms this.

Proposition 1.3.16. The Picard group Pic(R) of a Dedekind domain R can be
identified with the set of isomorphism classes of ideals J C R.

Proof. Any element of the Picard group Pic(R) is represented by some fractional
ideal and, conversely, all fractional ideals have a corresponding class inside Pic(R).
If I is a fractional ideal for R, then there is an element f € R and an isomorphism
of R-modules

I = fI=JCR defined by z — fz.

Since the two fractional ideals I and fI = (fR)I represent the same element in
Pic(R), every element of Pic(R) is represented by an ideal of R.

If I,J C R are two ideals which represent the same class in Pic(R), then by
the exactness of (1.3.11) there is an element f in the fraction field F' = R so
that (fR)I = J. If we write f = g/h for two elements g, h € R, then this gives
gl = hJ. So I and J are isomorphic as R-modules via the composition

1% gl =hg "5

Conversely, if I, J C R are two ideals of R that are isomorphic as R-modules,
then let ¢ : I — J be any such isomorphism. Choose some element f € I\ {0}.
Then for any x € I we have

fo(r) =o(fr) = o(f)z.

As x € I varies, we find that fJ = ¢(f)I so that I and J represent the same
element in Pic(R). O

WEIL DIVISORS AND THE DIVISOR CLASS GROUP

Recall that a prime ideal p inside a ring R is said to have height n if the supremum,
over all chains of prime ideals of R contained in p, of the lengths of a prime ideal
chain po C p1 C -+ S pr = p is n. Symbolically,

ht(p) = sup{r € Z> | there exists a chain of prime ideals pg C --- C p, = p}.

A prime ideal p C R satisfying ht(p) = 0 is therefore a minimal prime ideal of R.
If R is a domain, then ht(p) = 0 implies p = (0).
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Definition 1.3.17. Let R be a commutative ring. The free abelian group

WDiv(R)= @ Z-p
pC R prime
ht(p)=1

indexed by prime ideals p C R of height ht(p) = 1 is called the group of Weil
divisors for R. An element of WDiv(R), i.e. a formal linear combination of these
prime ideals with integer coefficients, is a Weil divisor for R.

A Weil divisor
D = Z niP;

is effective, written D > 0, if n; > 0 for all ¢ € I. If E is another Weil divisor, then
we write D — E > 0 to mean that D — E is effective. We say that D is irreducible
if there is a j € I so that n; =0 for alli € I\ {j} and n; = 1.

Remark 1.3.18. For a Dedekind domain R, each prime ideal p C R with ht(p) =1
is a maximal ideal. Geometrically, the affine scheme Spec(R) is one-dimensional,
so a curve, and irreducible Weil divisors are in one-to-one correspondence with the
closed points of Spec(R).

For a general ring R, the collection of irreducible Weil divisors is in one-to-one
correspondence with closed subschemes of codimension-1 in Spec(R). An arbitrary
Weil divisor for R is then a formal linear combination of these irreducible divisors
which may not correspond, in any obvious way, to a subscheme of Spec(R).

Although I'm not a historian, it seems likely that Weil divisors were introduced
in order to analyze the question of whether or not an arbitrary Weil divisor on a
given space, like Spec(R), could be realized as the collection of “zeros and poles of
a rational function f counting multiplicities”. (Well, historically it was probably
more appropriate to consider spaces akin to a complex manifold and, instead of
rational functions, one would ask about the possible zeros and poles of complex
meromorphic functions as in the Weierstrass factorization theorem).

For any ring R, we can consider an element f € R as a function on Spec(R)
with value at a point p € Spec(R) being the class of f in the residue field R, /pR,.
In this way, we have that f vanishes at a point p € Spec(R) if and only if f € p.
If R is a domain, then there are two trivial cases: either f = 0, and f vanishes
at all p € Spec(R), or f € R* is a unit and f vanishes at no point p € Spec(R).
The only other possibility is that f # 0 is a nonunit, in which case the ideal (f) is
contained in at least one maximal ideal m C R.

If R is a Noetherian integral domain, then the vanishing set of f is made up of
a collection of finitely many irreducible components corresponding to the finitely
many prime ideals of R minimally containing the ideal (f). The following theorem,
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known as Krull’s principal ideal theorem (or Krull’s Hauptidealsatz), implies that
in this case each minimal prime ideal for (f) has ht(p) = 1.

Theorem 1.3.19 (Krull’s Principal Ideal Theorem). Let R be a Noetherian ring.
Let (f) © R be a proper, principal ideal of R. Then for each minimal prime ideal
p of (f), there is an inequality ht(p) < 1.

Reference. This is proved in most texts on commutative algebra, see for instance
[Kun85, Theorem 3.1] for a nonstandard reference. One can also find a proof of
this result in the more standard [AM69, Corollary 11.17], in [Eis95, Theorem 10.1],
and online at [Stal9, Tag 00K V]. O

All of this is to say that a Weil divisor really is the appropriate geometric object
capturing the vanishing of a nonzero, nonunit function f € R. However, there’s
still the problem of accurately capturing the notion of “the order of vanishing”
of such a function f. If we assume that R is a UFD, then we could just write
f =wuni" -7l uniquely as a product of a unit v € R* and some prime elements
T1,...,Ts € R to some powers 71, ...,7s € N and then define the order of vanishing
of f at a prime ideal (7) € Spec(R) to be r; if 1 = m; for some 1 < i < s and 0
otherwise. This works well in simple cases, e.g. if R = k[z] is a polynomial ring in
one variable over a field k and f is an element like f = (z — 1)?(z + 1), but most
rings are not UFD'’s.

The next best assumption we could work with is that R is a Dedekind domain.
Then R may not be a UFD but, the ideal (f) C R still admits a unique factorization
into a product of prime ideals (f) = pi* - - - pl* with 71, ...,75s € N so that we could
define the order of vanishing of f at a prime ideal p to be r; if p = p; for some
1 < i < s and 0 otherwise. Of course, the number r; can, in this case, also be
determined using only information coming from the ring R,, by writing f = un;’
for some unit u € R, and for some uniformizer 7; of the DVR R,,.

This last point requires us to assume much less than for R to be a Dedekind
domain. Specifically, to define the order of vanishing of the function f at a prime
ideal p of height ht(p) = 1 we could start by assuming that the localization R, is
a DVR, picking a uniformizer 7 for R, with associated valuation v, and taking
the order as the number v, (f); this recovers our first two definitions, in both the
case of a UFD and the case of a Dedekind domain, at the very least.

A sufficient condition for the localization R, to be a DVR at each prime ideal p
with ht(p) = 1 is the assumption that R is an integrally closed Noetherian domain.
Then for any prime ideal p C R the localization R, is also integrally closed [AM69,
Proposition 5.13] and, for primes p with ht(p) = 1, this implies that R, is a DVR
[AMG69, Proposition 9.2]. In fact, if we're willing to work with Noetherian domains,
then assuming R is integrally closed is nearly also necessary for defining the order
of vanishing for a function f € R in this way because of the following theorem.
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Theorem 1.3.20. Let R be a Noetherian integral domain with fraction field F.
Then R 1s integrally closed in F' if and only if the following conditions are satisfied:
(1) for all prime ideals p C R with ht(p) =1, the ring Ry is a DVR;
(2) there is an equality
R= (] R

pCR prime
ht(p)=1

inside the field F.

Reference. Assume that R is integrally closed. Then we’ve observed already that
R, is a DVR for all prime ideals p C R with ht(p) = 1 by [AM69, Proposition 9.2].
Moreover, the subring R C F'is equal to the intersection given in (2), see [Rei95,
§8.10, Theorem| or [Mat89, Theorem 11.5].

Conversely, if (1) and (2) hold then R is integrally closed as it is the intersection
of valuation rings, see [AM69, Corollary 5.22]. n

With that out of the way, it’s finally time to make the following definition.

Definition 1.3.21. Assume that R is an integrally closed Noetherian domain with
fraction field F' = R(). Let p C R be a prime ideal with height ht(p) = 1. Choose
a uniformizer m € pR, and let v, : F* — 7Z be the valuation of F' induced by 7.
We define the order of vanishing of f € F* at p as the integer ord,(f) := v.(f).

Remark 1.3.22. Keep the set-up (R, F,p, 7, f) of the above definition. The order
of vanishing ord,(f) can usually be computed in-practice as follows.

Since F'is also the fraction field of Ry, the element f € F'* can be written as a
ratio f = g/h for two elements g, h € R,. One can then write ¢ = un” and h = v7*
for units u,v € R, and for integers r, s > 0. Then v, (f) = vz(g) — vr(h) =7 —s.
This number is the same regardless of the choice of uniformizer = € pR,, since the
valuation itself is independent of 7, and:

(1) vz(f) > 0if and only if f € R,
(2) vr(f) > 0if and only f € pR,.

Lemma 1.3.23. Let R be an integrally closed Noetherian domain with F' = Rg).
Let div : F* — WDiv(R) be the map defined by

div(f)= > ordy(f)-p.
pCR prime
ht(p)=1

Then div s a well-defined group homomorphism.
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Proof. For any prime ideal p C R with ht(p) = 1, the valuation v, induced by a
uniformizer 7 of p yields a group homomorphism v, : F* — Z which is identically
the component ord, : F* — Z - p of div. Together the various ord, maps give a
well-defined homomorphism to the product

div': F* —» ] Z-p defined by div'(f) = (ordy(f)),-

pCR prime
ht(p)=1

Now the map div’ has image in the subgroup WDiv(R) since for any f € F* we
have ord,(f) = 0 for all but finitely many prime ideals p of ht(p) = 1 (if we write
f = g/h for g,h € R, then both elements g and h are contained in only finitely
many height one primes since R is Noetherian). The map div : F* — WDiv(R)
is then the induced homomorphism with this restricted target. O]

Definition 1.3.24. Let R be an integrally closed Noetherian domain with field of
fractions F' = R(p. We call a Weil divisor D € WDiv(R) a principal Weil divisor
if D is in the image of the divisor map div, i.e. if there is a rational function f € F'*
so that D = div(f).

The cokernel of the divisor map, i.e. the quotient of the group of all Weil divisors
by the subgroup consisting of all principal Weil divisors, is called the divisor class

group of R and written as Cl(R) = WDiv(R)/div(R).
By analogy with Theorem 1.3.10, there is a corresponding exact sequence.

Proposition 1.3.25. Let R be an integrally closed Noetherian domain with field
of fractions F'. Then the sequence of group homomorphisms

div

(1.3.26) 1—- R*— F* — WDiv(R) — CI(R) — 0
18 exact.

Proof. The only thing to check is that the kernel of div : F* — WDiv(R) is the
group of units R* of R. Solet f € F’* be such that ord,(f) = 0 for all p C R prime
with ht(p) = 1. This implies, in particular, that the valuation of f corresponding
to any such prime also vanishes; hence f € R, \ pR, for all such primes. By (2) of
Theorem 1.3.20, it follows that f € R is an element such that (f) is contained in
no height one prime ideal.

If f were a nonunit, then the ideal (f) would be contained in some maximal
ideal m and hence would be contained in some prime ideal p which was minimal
with respect to containing (f). But by Theorem 1.3.19, the height of p must be
one and this would imply f € pR,. So f must be a unit (i.e. f € R*). ]
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The similarity between the sequence (1.3.26) of Proposition 1.3.25 and (1.3.11)
of Theorem 1.3.10 is overly suggestive. To compare the two directly, we’ll construct
a natural map

div : I, (R) — WDiv(R)
so that for rational function f € F'* in the fraction field of R there is an equality
div(fR) = div(f) for the principal fractional ideal fR of R.

If I is an invertible fractional ideal for an integrally closed Noetherian domain
R, andifp C R is a prime ideal of height ht(p) = 1, then R, is a DVR. Suppose that
the maximal ideal pR, is generated by 7. Then by Remark 1.3.14 the fractional
ideal I, for R, is equal to 7" R, for some r € Z. Define ord,(I) =r.

Theorem 1.3.27. Let R be an integrally closed Noetherian domain with F' = R ).
Then div : I;,.(R) — WDiv(R), defined on an invertible fractional ideal I of R by

div(l) = Z ord, (1) - p,
pCR prime
ht(p)=1

is a well-defined group homomorphism with div(fR) = div(f) for any f € F*.
Hence, there is a commutative diagram with exact rows

1 > R > B > I1,(R) — Pic(R) —— 1

| o L

1 > R* » F* — WDiv(R) —— CI(R) —— 0

where ¢ : Pic(R) — CI(R) is the induced map on quotients. Moreover, both of the
following statements are true:

(1) the morphism ¢y is injective,

(2) ¢ is surjective if and only if R, is a UFD for every prime ideal p C R.

Proof. There’s a lot to prove, so we’ll work our way down the theorem statement.
First, we show that div : I;.(R) — WDiv(R) is a well-defined homomorphism.
Since [ is finitely generated (see Remark 1.3.2), it follows that ord, (/) = 0 for all
but finitely many prime ideals p C R with ht(p) = 1. Hence div is well-defined.
That div is a group homomorphism can then be seen using Lemma 1.3.12.

Compatibility between the two div maps follows immediately, and hence the
given diagram is commutative. We next show that c¢; is injective and, to do this,
we actually show that div : If,.(R) — WDiv(R) is injective. So, suppose that [
is an invertible fractional ideal with div(/) = 0. This implies that I C R is an
integral fractional ideal of R (so, really, an ideal) since

Ic (1 L= () R=R

pCR prime pCR prime
ht(p)=1 ht(p)=1
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with the last equality coming from (2) of Theorem 1.3.20. By the same reasoning
I7! C R is also an ideal. Now from the containments

R=II""*CcIRCICR,

we see that [ = R.

Lastly, we need to show that ¢; is surjective if and only if R, is a UFD for all
prime ideals p C R. The converse first: if p C R is a prime ideal with ht(p) = 1,
then p is finitely generated and, for every prime ideal ¢ C R, the localization
pq = PRy C Ry is isomorphic with R, since R, is a UFD. This is clear if ¢ 2 p.
Otherwise, if x € p is any element then x = um; - - - 7, for some nonzero irreducible
elements 7; € Ry and for a unit v € R,. Since p, is prime, there exists some index
1 <i < n such that (m;) C pg. But (7;) is a prime ideal also, since Ry is a UFD,
so the inclusion (m;) C pg must be an equality for height reasons. It follows from
this that p is invertible as an R-module.

Now we are going to show that p is also an invertible fractional ideal and that
c1([p]) = [p]. By Proposition 1.3.4, there is an invertible fractional ideal h which
is isomorphic as an R-module with Hompg(p, R). By Lemmas 1.3.7 and 1.2.8 there
are isomorphisms

ph = p®pb = p @p Homp(p, R) = R.

This means that the fractional ideal ph is principal, so that there is an f € F*
with fR = ph. Since p = (fR)h! is a product of two invertible fractional ideals,
it follows that p is an invertible fractional ideal. Of course, div(p) = p so that div
is a surjection; it follows from this that ¢; is surjective.

For the forward direction, assume that ¢; is surjective. We need to show that
R, is a UFD for all prime ideals p C R. The argument uses the following lemma.

Lemma 1.3.28. Let R be a Noetherian domain. Then R is a UFD if and only if
each prime ideal p C R with ht(p) = 1 is a principal ideal.

Proof. Let R be a UFD. Pick a height one prime ideal p C R and a set of generators
p=(f1,., fo) with f; Z0forall 1 <i <mn. If f; =m -7, is a factorization into
irreducible elements, then m; € p for some i € {1,...,7}. So there is a contaniment
0 C (m) Cp. As Ris a UFD, the ideal (m;) is prime and, since p has height one,
we must have (m;) = p. This argument was used above too.

Conversely, assume that all prime ideals of R with height one are principal. In
this case, all irreducilbe elements are prime elements. Indeed, if 7 is an irreducible
element of R then for any minimal prime ideal p containing (7), we have ht(p) = 1
by Theorem 1.3.19. But then p = (x) is principal by assumption, so 7 = zy for
some y € R. As 7 is irreducible, it follows that y is a unit, hence (7) = p.
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Now we prove that R is a UFD under this hypothesis. If f € R is a nonzero,
nonunit element then there is a factorization of f into irreducible elements of R
since R is Noetherian. Suppose that we have two such factorizations

f=m-oom and fe=t -t

where the elements m; for 1 < ¢ < r are irreducible as are the elements ¢; for
1 < j < s. Since m is prime, there is some j € {1,...,s} with ¢; € (m). If we
write ¢; = uym for some unit v, € R then, after substituting, we have

f=m-m and  f=uwity - toamitia s

so that mo - -~ m, = uity -~ -t;_1tj41 - - - ts as R is a domain. Continuing in this way,
we eventually find that m, = ut;, - --t;, for some iy, ...,i; € {1,..., s} and for a unit
u=1u---u_1 € R If k> 1, then it would follow that one of the elements ¢; for
i € {1,...,s} was a unit, which isn’t true. Hence k£ = 1 so that r = s and it follows
that R has unique factorization. O

Coming back to the proof of Theorem 1.3.27, the lemma says that in order to
show that R, is a UFD for any given prime ideal p C R, it suffices to check that
each height one prime ideal of R, is principal. Let ¢ C R be a prime ideal with
qR, a height one prime ideal of R,. Then q must also have ht(q) = 1 inside R.

Since ¢; is surjective, so is div : Iy,.(R) — WDiv(R). This means that there is
an invertible fractional ideal I for R with div(/) = q. Localizing, we see that the
map div : I, (R,) = WDiv(R,) is defined so that div(/,) = q. But, over R,, the
fractional ideal I, is free and, therefore, trivial inside of Pic(R,). By the exactness
of Theorem 1.3.10, this means that I, = fR, for some f € F*. By construction,
we have ord,(f) > 0 for all prime ideals v C R, of height ht(t) = 1. It follows that
f € R, by (2) of Theorem 1.3.20.

We claim that qR, is the principal ideal generated by f. Indeed, if g € qR, is
any nonzero element then

orde(g/f) = orde(g) — orde(f) = 0

for all primes v C R, of height ht(r) = 1 so that g/f € R, by another application
of part (2) from Theorem 1.3.20. Hence g = (¢g/f)f and (f) = qR,. Since qR,
was arbitrary, Lemma 1.3.28 now shows that R, is a UFD as claimed. [

Example 1.3.29. If R is a Dedekind domain, then we can identify the map
div : I,(R) — WDiv(R) with the canonical morphism sending a fractional ideal
I with factorization

I =p---p, Tiy.sTs €L

to the Weil divisor D = rip; + - -+ + rsps. Compare with Remark 1.3.15.
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Remark 1.3.30. The map ¢; : Pic(R) — CI(R) of Theorem 1.3.27 composed with
the determinant from Corollary 1.2.16 yields a morphism (also named ¢; by abuse

of notation)
det

¢ : K(R) — Pic(R) — CI(R)
called the first Chern class homomorphism. Given a finitely generated projective
R-module P, the element c¢;([P]) € CI(R) is called the first Chern class of P.

For a given Noetherian domain R, the assumption that the localization R, is a
UFD for each prime ideal p C R may sound like a surprisingly strong constraint.
If R, is a UFD for every prime ideal p C R, then since a UFD is integrally closed,
and since being integrally closed is a local property [AM69, Proposition 5.13], it
follows that a domain R with this property is integrally closed.

From the other direction, if R is a UFD, then for any prime ideal p C R the
localization R, is a UFD. So any UFD gives an example of a ring with this property.
But are these the only examples? To make the discussion easier, we introduce the
definition:

Definition 1.3.31. A ring R is said to be locally factorial if the localization R,
is a unique factorization domain for each prime ideal p C R.

Example 1.3.32. If R is a Dedekind domain, then R is locally factorial since for
any prime ideal p C R, the localization R, is either a field or a DVR (and a DVR,
being a PID, is a UFD).

One might know already that there are Dedekind domains which do not have
unique factorization (we’ll see some soon), so there are plenty of rings which are
locally factorial and which are not unique factorization domains. In Section 1.5,
we’ll see that there exists a natural class of rings, with a very appealing geometric
interpretation, which will provide us with many more examples of locally factorial
rings. For now, though, we prove the following corollary to Theorem 1.3.27 which
will help us in analyzing examples.

Corollary 1.3.33. Let R be an integrally closed Noetherian domain. Then R is
a UFD if and only if CI(R) = 0.

Proof. By Lemma 1.3.28, it suffices to show that CI(R) = 0 if and only if each
prime ideal p C R with ht(p) = 1 is a principal ideal. For the forward direction,
if CI(R) = 0 then each irreducible Weil divisor p is a principal divisor, so there is
an element f € F' = Ro) such that div(f) = p. But, as in last paragraph of the
proof of Theorem 1.3.27, this implies that p = (f).

Conversely, if each prime ideal p C R with ht(p) = 1 is a principal ideal, then
choose one such ideal, say ¢ C R, and let ¢ = (7) be generated by some 7 € R.
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We claim that div(7) = q. Clearly ordg(7) = 1; we need to show that ord,(m) =0
for all other height one prime ideals p # q. If v was such an ideal, generated by
some element ¢ € R, then ord.(7) = a if and only 7 = u&® for some unit u € R.
If @ > 1, then since 7 is a prime element, we would necessarily have m divides &.
Thus we obtain the contradiction (0) C v C q since ht(q) = 1. O

Remark 1.3.34. If R is a Dedekind domain, then CI(R) = 0 implies Pic(R) = 0.
By Proposition 1.3.16 the vanishing Pic(R) = 0 then implies that R is a PID.
Hence, for a Dedekind domain R, we have CI(R) = 0 if and only if R is a PID.

Example 1.3.35. Let k be a field where —1 is not a square of any element of k.
Then the ring R = k[z,y]/(2* + y* — 1) is a Dedekind domain (see Exercise 1.3.4).
Since Pic(R) # 0 by Example 1.2.17, we have from Theorem 1.3.27 that R is a

locally factorial ring which is not a UFD.

Example 1.3.36. Let k be a field where —1 ¢ k*? as in the above example. Let
R = k[x,y,2]/(xy — 22+ 1) as in Example 1.2.19. By Exercise 1.3.5, the ring R is
integrally closed. Since Pic(R) # 0, the ring R is not a UFD. Here R is still locally
factorial, as one can check in Exercise 1.3.7, but R is not a Dedekind domain since
the Krull dimension of R is 2.

Example 1.3.37 (Compare with [Har77, Ch. 2, Example 6.5.2]). Let k be any
field, and let R = k[z,y, 2]/ (zy—2?). We will show Pic(R) = 0 and CI(R) = Z/27Z.
One can check that R is a Noetherian domain (using Eisenstein’s criterion) and by
Exercise 1.3.3 the ring R is integrally closed. So this provides at least one example
of an integrally closed Noetherian domain which is not locally factorial.

Z

I

|

I

|
x \J
Figure 1.3: The vanishing locus V (zy — 2?) inside A3

We start by observing the element y € R has the property that

R/yR = k[z,z]/(z*) and R, ~k[y,y ', z].
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The only minimal prime ideal containing (y) C R is then of the form (y, z) which
corresponds to the nilradical of R/yR.

Now there is a natural way to compare the exact sequences from (1.3.26) applied
to R and R, which ends up as a commutative ladder like so:

| ! !

x » F* - WDiv(R,) —— CI(R,)

1 » R* s F* 9y WDiv(R) —— CI(R) —— 0
R —

0.

Here the map WDiv(R) — WDiv(R,) is the canonical projection with kernel the
subgroup Zp where p = (y, z) is the minimal prime ideal containing y. Since the
map F*/R* — F*/RX is a surjection, the subgroup Zp surjects onto the kernel
of the induced map Cl(R) — CI(R,). But, R, is a UFD, so by Corollary 1.3.33
Cl(R,) = 0 and CI(R) is then generated by the class [p].

For any height one prime ideal ¢ C R with q # p, we must have ord,(y) = 0
since y ¢ q. A computation shows that ord,(y) = 2 since Ry, ) is generated by
z and in this ring y = 2?/z. Hence div(y) = 2p so that, by definition, there is a
relation 2[p] = 0 inside C1(R). We still need to show that [p] # 0 inside CI(R).

There are two possibilities at this point: either CI(R) = 0 or CI(R) = Z/27Z. 1f
CI(R) = 0, then because of Theorem 1.3.27 the ring R would be locally factorial.
We're going to show that this is not the case by exhibiting a maximal ideal m C R
and a height one prime ideal p C R with the property that pR,, is not principal
inside Ry,. By Lemma 1.3.28, this implies R,, is not a UFD and therefore we must
have CI(R) = Z/27Z. Since we're showing that R is not locally factorial, this also
implies that Pic(R) = 0.

We take for m the ideal m = (z,y,2) and for p we take p = (y,z). Clearly
pRy C mRy. The quotient mR,/(mRy)? = m/m? is an R/m = k-vector space of
dimension 3 (spanned linearly by the elements x,y, z). If pR,, was principal, then
the image of p in m/m? would be a 1-dimensional k-vector subspace but, this is
not the case since the image contains both z and y.

EXERCISES FOR SECTION 1.3

1. (Cartier divisors). Let R be an integral domain and F' = Ry its fraction field.
Write CDiv(R) for the set of all sets of pairs {(s;, fi) }icr consisting of pairs of
elements s; € R and elements f; € F' satisfying the properties:

(1) the basic opens D(s;) C Spec(R) cover Spec(R) as i € I varies;
(2) for all 4, j € I there is a unit ¢;; € RSXZ_SJ_ so that f; = ¢ fi:
(3) for any triple 4, j, k € I we have ¢;,¢;; = @i inside R

8iS;jSk "
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We define two such sets {(s;, f;) }ier and {(;, g;) }jes to be equivalent if for all
pairs (4, j) € I x J there is some p;; € R, so that f; = p;;g;. The collection of
these sets, up to this equivalence, is denoted CDiv(R) and an arbitrary element
of CDiv(R) is called a Cartier divisor for R.

(a)

(b)

Let {(ss, fi) }ier represent a Cartier divisor D for R and let £ be another
Cartier divisor represented by {(¢;,9;)}jes. Define D + E as the Cartier
divisor represented by {(st;, fig;)} (i j)erxs. Show that the set CDiv(R) is
naturally an abelian group with this operation.

Let D be a Cartier divisor represented by a collection of pairs {(s;, fi) }ier-
Associate to D the R-submodule I(D) C F defined as

il

Show that (D) is an invertible fractional ideal for R.

Define a map ¢ : CDiv(R) — I,(R) by sending a Cartier divisor D to the
fractional ideal I(D). Show that ¢ is an isomorphism of groups.

Prove that the composition of the homomorphisms ¢ : CDiv(R) — If,(R)
and div : Iy, (R) — WDiv(R) has the following interpretation. If a Cartier
divisor D is represented by {(s;, fi) }ier, then

divo (D) = Z ord,(f;)p for any i with s; ¢ p.

pCR prime
ht(p)=1

2. Let k be a field and let R = k[x, y] be the polynomial ring in two indeterminants
x and y. Let [ = (z,y) C k[x,y] be the maximal ideal generated by = and y.

Prove that I is a non-invertible fractional ideal and show I # (I™1)

-1

3. Let k be any field. Let R = k[z,y,z]/(2* — zy). Let F = Rp be the field of
fractions of the ring R.

(a)
(b)

Convince yourself that R is a Noetherian domain and that both R, and
R, are integrally closed inside F'.

Prove that there is an equality R = R, N R, inside the fraction field of R.
As R is then the intersection of integrally closed subrings of F', it follows
that R is itself integrally closed.

(Hint: If w € R, N R,, then we can write w = f/2™ and w = g/y" for some
elements f, g € R and some n,m > 0. Note that R is a free k[x, y]-module
with basis {1, z}. Writing f = fo + fiz and g = go + g1z for polynomials
fo, f1, 90,91 € k[x,y] it then follows that y"fy = 2™ gy and y"f; = z™¢;.
Conclude that w € R.)
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4. Let k be a field so that —1 is not the square of any element from k. Let E/k
be the field extension which adjoins to k a square root of —1.

(a)

(b)

(c)

Show that E[x,y]/(x* + y* — 1) is isomorphic with E[X,Y]/(XY — 1) by
associating X to z + iy and Y to x — iy where ¢ € E' is any element such
that > = —1. Show then that E[X,Y]/(XY — 1) is isomorphic E[t, ']
so that E[z,y]/(z* + y*> — 1) is a Dedekind domain (in fact, a PID).

Let R be an integral domain with fraction field F. Suppose that a finite
group G acts on F' and let R® denote the set of elements x € F so that
gr = x for all g € G. Prove that if R is integrally closed in F', then R is
integrally closed in its field of fractions as well.

Let G be the Galois group of E/k. Show that G has an action on the field
of fractions R = Elx,y]/(x? +y? — 1) with R® = k[z,y]/(2? + y* — 1) the
subring of fixed elements. Deduce from this that R is a Dedekind domain.

5F (Compare with the sources [Har77, §2, Ex. 6.4] and [Mat89, Example 4, p. 65]).
Let R be any UFD with 1/2 € R and let f € R be any squarefree element.
Prove that R[y]/(y* — f) is an integrally closed domain.

6. In this exercise we’ll show that the Picard group of the ring Z[v/—5] is nontrivial
by proving that Pic(Z[v/—5]) has an element of order 2.

(a)
(b)

(d)

Check that R = Z[v/—5] is integrally closed in its field of fractions Q(v/—5).

Convince yourself that R is a Dedekind domain.
Define the norm function N : R — Z by setting

N(a+bv—5) = a®> +5b*> for a,b € Z.

Show that for any x,y € R we have N(zy) = N(x)N(y). Show also that
N(u) =1 if and only if u is a unit in R.

Let J = (2,1++/=5) C R be the given ideal. Prove both that .J is a prime
ideal and that J is not principal. For the latter claim, note that if J = ()
then z divides both 2 and 1 + /=5 so N(z) divides both N(2) = 4 and
N(1++/=5) = 6. Hence either N(z) = 1 (which would imply that x is a
unit) or N(z) = 2 (which is impossible, since a? + 5b> = 2 has no solutions
with a,b € Z).

Conclude that the class of the ideal .J is a nontrivial element inside Pic(R).
Check that J? = (2) C R so that the class [J] € Pic(R) has order 2.

One way to see that there is an isomorphism Pic(Z[v/—5]) & Z/27Z is through
use of Minkowski’s bound for the ring of integers of an algebraic number field,
[Mill4, Theorem 4.3 and Example 4.6]. For these rings, Minkowski’s bound
allows one to restrict the set of all possible representatives for the isomorphism
classes of ideals in the Picard group to a specific (computable) finite set.
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7. Let k be any field of characteristic not 2 and let R = k[z,y, 2]/(zy — 2% + 1).
Here we complete the computation from Example 1.2.19 and show both that
Pic(R) = Z and Cl(R) = Z.

(a)
(b)

(e)

Use Exercise 1.3.5 to show that R is integrally closed.
We’re going to mimic the proof from Example 1.3.37 with some alterations.
To start, observe that for x € R there are isomorphisms

R/xR = k[y,2]/(2* —1) and R, = k[z,2™', 2].

It follows that the minimal primes of (z) C R are the ideals (x, z — 1) and
(z,z 4+ 1) and that R, is a UFD.
Show that there are isomorphisms of groups

R} = Hk’xxi and R* = k.
i€
It follows that the canonical inclusion R* — R’ has cokernel isomorphic
with Z. Hence the surjection F’*/R* — F* /R has kernel the subgroup
generated by x which is isomorphic with Z.
Show that div(z) = p; +ps where p; = (x,2—1) and ps = (x,2+1). Make
use of a commutative diagram like this one

1 —— F*/R* —% WDiv(R) —— CI(R) —— 0

| l |

1 —— F*/R* - WDiv(R,) — CI(R,) — 0.

noting that the kernel of WDiv(R) — WDiv(R,) is the subgroup Zp, SZp,.
Conclude that CI(R) = Z.

Prove that p; (resp. po) is an invertible fractional ideal and prove that the
map div : I, (R) — WDiv(R) satisfies div(p1) = p1 (resp. div(ps) = p2).
Conclude that Pic(R) = Z. Note this proves also that R is locally factorial.

8. Unlike the Picard group which admits functorial maps for arbitrary morphisms
of rings, see Exercise 1.2.7, the divisor class group is functorial only on certain
restricted classes of morphisms of rings. Here we show that one can construct a
group homomorphism between the divisor class groups of two rings given either
a flat or integral extension of rings.

(a)°

Prove the going down theorem for flat ring extensions. More specifically,
let R be any ring and let S be a ring with R C S realizing S as a flat
R-module. Let p; C ps be two prime ideals of R and let gy be a prime ideal
of S so that o N R = py. Show that there exists a prime ideal q; C g2 C S
so that q; N R = p;. (Compare with [AM69, Ch. 3, Exercise 18].)
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(b) Suppose that R and S are both Noetherian integrally closed domains with

R C S and assume that either S is a flat R-module or that R C S is an
integral extension of rings. Define a map

resy : WDiv(R) — WDiv(S)  p— > e(a/p)q

qCS prime
gNR=p, ht(q)=1

where e(q/p) is the ramification index of p in q. Note that, by definition,
if 7 is a uniformizer for the local ring S, and if ¢ is a uniformizer for the
local ring R, C S, then e(q/p) = v,(t). The definition of the map Tesy
then makes sense because, for any prime ideal p C R with ht(p) = 1, there
are only finitely many primes q C S with both ht(q) =1 and qN R = p (if
x € p is any nonzero element then there are only finitely many minimal
primes of S/xS since the latter is Noetherian).

Let F' be the fraction field of R and let E be the fraction field of S.
Write divg : F* — WDiv(R) and divg : E* — WDiv(S) for the two
divisor maps. Use either part (a) or [AM69, Theorem 5.16] to show that
tesy, o divg(f) = divs(f) for all f € F* so that there is a well-defined
homomorphism

resi 1 CI(R) — CUS) [l = D ela/p)ldl
qCS prime
anR=p, ht(q)=1
induced from the map Tesy,.
Prove that if R, S,T are three integrally closed Noetherian domains
with R C S C T and if either T is flat over S and S is flat over R, or if T’
is integral over S and S is integral over R, then 7' is flat over R, or 7' is

integral over R, and resh = resk o resy,.

9. Prove the following variant of Nagata’s theorem: if R is an integrally closed

10.

Noetherian domain and if S C R is a multiplicatively closed subset, then the
kernel of the homomorphism from Exercise 1.3.8

resy;, : Cl(R) — CI(S™'R)

is generated by classes of those prime ideals p C R such that pN S # (. This
observation has been tacitly used in Example 1.3.37 and Exercise 1.3.7.

If R and S are two integrally closed Noetherian domains, if R C S, and if S
is flat as an R-module then the morphism ¢; : Pic(—) — CI(—) is a natural
transformation with respect to the maps ress of Exercises 1.2.7 and 1.3.8,
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(a)

Let I' = Ry be the fraction field of R, and suppose that I C F' is an
invertible fractional ideal for R. Then there are elements fi, ..., f,, € F so
that I=' = fiR+---+ f,R. Show that I = fiRN---N f,R and, if E = S(g)
is the fraction field of S, show that the S-module I ®pz S is isomorphic
with the invertible fractional ideal ST C F equal to ST = f1SN---N f,S.
Let p C R be a prime ideal with ht(p) = 1. Let fi,..., fn € F be elements
so that I = fiRN---N f,R is an invertible fractional ideal. Prove that

ord,(I) = max{ord,(f1),...,ord,(fn)}-
Use this to show that the map map
tesy : I (R) — I;,(S) I+ SI
is a group homomorphism which fits into a commutative diagram

TagS
I'ESR

L (R) ——— I1,(5)

ldivR ldivs
S

WDiv(R) —2 WDiv(S)

with the morphism Tes?, : WDiv(R) — WDiv(S) of Exercise 1.3.8.
Conclude that the following diagram commutes.

S

Pic(R) —2+ Pic(S)

b b

I‘GSR

CI(R) —=2 C1(S)

By Exercise 1.2.7, this means also that there is a commutative diagram
like the following one:

S
resp

K(R) —— K(95)

Cc1 C1

S
resR

ClI(R) —£, C1(S).

Hence the first Chern class (Remark 1.3.30) is functorial with respect to
flat ring extensions.
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11. In this exercise we prove a generalization of the fact that a ring R is a UFD if and
only if the ring R[z] is a UFD. In particular, we show that: if R is an integrally
closed Noetherian domain, then R[z] is an integrally closed Noetherian domain
and there is an isomorphism Cl(R) = Cl(R[x]).

(a)

(b)

Let R be an integrally closed Noetherian domain. Prove that R[x], the ring
of polynomials in one variable x with coefficients in R, is also an integrally
closed Noetherian domain.
Let p C R be a prime ideal with ht(p) = 1. Assume that q C R[z] is a
prime ideal with ¢ N R = p. Show that one of the following must be true:
i. g =pR[x] and ht(q) = 1,
ii. ¢ 2 pR[z] and ht(q) > 1.
(Hint: in the latter case, show that there exists a g € q so that the image
q of q in R[z]/pR[z] = (R/p)[z] has the form

a=1{f € (B/p)lz] : af € (g) for some 0+ a € R/p}.

One can take for g a polynomial of minimal degree in q.)
Let R be an integrally closed Noetherian domain with fraction field F'. Let
S = R\ {0}. Then S™'R[z] & F[z] is a PID and hence CI(S~'R[z]) = 0.
By Exercise 1.3.9, the restriction map

resp” : Cl(R[z]) — CI(Flx])

z]

has kernel generated by the prime ideals q of R[z] with N R # 0. Use (b)
from above to show that the map

resi® . C1(R) — CI(R][x])

is surjective.
Suppose that p C R is a prime ideal with ht(p) = 1. Suppose that pR[z] is
a principal Weil divisor fR for some f in the fraction field F' of R. Show
that pR[x] = (f) is then the principal ideal (f). Since p ®g R[z] = pR|x]
it follows that

p = p g R[z] Opp R

is principal, where in the last tensor R is treated as an R[z]-module via
the isomorphism R = R[z]|/(z). Conclude that the map

rest™ . C1(R) — CI(R][x])

is injective as well.
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12. (Divisor class groups for more general rings). Let k be a field and let R be an
integral domain and finitely generated k-algebra with fraction field F' = R(g).
In this exercise we show how to define a group morphism div : F* — WDiv(R)
which agrees with the map defined in Lemma 1.3.23 when R is integrally closed.

Let R¥ C F be the integral closure of R in F. The integral closure R”
is a finitely generated R-module. In the case that char(F) = 0, this can be
proved as follows. By Noether’s Normalization lemma, there is a k-subalgebra
A = kly1,...,ya) C R so that R is finitely generated as an A-module. Hence R”
is the integral closure of A in the finite separable extension F/k(y1, ..., yq) which
is finitely generated by [AMG9, Proposition 5.17]. The proof in the general case
is similar, but must take into account the possibility of inseparable extensions,
see [Ser00, §4, Proposition 16] or [Eis95, Corollary 13.3].

(a) Let p C R be a prime ideal and write R, for the integral closure of R,.
Prove that there are finitely many prime ideals ¢ C R" lying over p.
Moreover, if q is such an ideal then qR, is maximal in Ry and the field
extension degree [R)/qRy : R,/pR,| is finite.

(b) Define div : F* — WDiv(R) by

div(f) = ) Y ordg(N[Ry/aRy : Ro/pRy] | - p.
pCR prime | qCRY prime
ht(p)=1 qNR=p

Prove that div is a well-defined group homomorphism.

(¢) Define CI(R) = WDiv(R)/div(F*). Prove that if R = k[z,y]/(y* — 23) as
in Exercise 1.2.10, then CI(R) = 0. If one defines div : I1,(R) — WDiv(R)
using a formula similar to the above, then this gives an example of a ring
R so that Pic(R) — CI(R) is not injective.

It’s possible to define a “divisor map” div : F'’* — WDiv(R) for an arbitrary
Noetherian ring R [Eis95, Theorem 11.10]. If R is either integrally closed or if R
is a domain and a finitely generated k-algebra, then this more general definition
agrees with either the definition from Lemma 1.3.23 or the definition from this
exercise; in the latter case see [Ful98, Example 1.2.3].

1.4 G-THEORY

The G-theory G(R) of a commutative ring R is an object that’s more suitable for
geometric questions. It’s defined in a similar way to K (R).
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Definition 1.4.1. Let R be a commutative ring. Let M,(R) be the free abelian
group on isomorphism classes of finitely generated R-modules, i.e. let

Myy(R) =Pz -M

where the index M varies over the choice of a representative for each isomorphism
class of finitely generated R-module. Let M., (R) C M;,(R) be the subgroup
generated by elements M — L — N for each short exact sequence

O0—=L—M-—=>N-—=0

of finitely generated R-modules L, M, and N. We define the G-theory of the ring
R as the quotient group G(R) = M;,(R)/M.(R).

Remark 1.4.2. Let M., (R) C My,(R) be the subgroup generated by elements
> is1(—1)'N; for each long exact sequence

0—=+N.—- =N =0

of finitely generated R-modules. Set N, = 0 for all £ < 0 and for all £ > r + 1.
Set K; = ker(N; — N;_1). Then Kj is finitely generated as K; = Im(N;1; — N;)
and there are short exact sequences

0= K, — N, = K;_1 =0

for all @ > 2. The inclusion M., (R) C M., (R) is then an isomorphism since

Z(_l)iNi = Z(_l)i (N, — K; — K;—1) .

i>1 i>2
It follows that G(R) = M,(R)/M.(R) = M,(R)/Me.(R).

For any prime ideal p C R, the quotient R/p is a finitely generated R-module
and hence defines a class [R/p| in G(R). As the set of such quotients R/p is in a
one-to-one correspondence with irreducible closed subsets of Spec(R), we can try to
recover information about the geometry of Spec(R) from the classes [R/p] € G(R).
To do this formally, we introduce the following definition.

Definition 1.4.3. Let X = Spec(R) be the affine scheme associated to a ring R.
We write X C Spec(R) for the set of prime ideals p C R having ht(p) = n.
We then define Z"(R) as the free abelian group on symbols R/p indexed by the
elements of X i.e.

Z'(R)= € Z-R/p.

peXx (™)
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Elements of Z"(R) are called height n-cycles and the group Z™(R) is the group of
height n-cycles on R. To denote the group of all cycles on R we’ll write

Z(R):= € z"(R)

TLEZZO
with the superscript n removed.

Remark 1.4.4. Theorem 1.3.19 (Krull’s Principal Ideal Theorem) can be used
to analyze the heights of ideals with a higher number of generators. Namely, if
R is a Noetherian ring and if I C R is an ideal which can be generated by n
elements, then any minimal prime ideal p over I has ht(p) < n (for proof one can
see the sources [Eis95, Theorem 10.2] or [AMG9, Corollary 11.16] or [Liu02, Ch. 2,
Corollary 5.14]). This has the useful consequence that if R is a Noetherian ring,
then every prime ideal p C R has finite height.

Hence, for any Noetherian ring R, the group Z(R) is canonically the free abelian
group indexed by elements of Spec(R). Regardless of whether or not the ring R is
Noetherian, there is also a canonical isomorphism WDiv(R) 2 Z!(R) making the
connection between prime ideals p and quotients R/p.

Now there is a well-defined homomorphism
(1.4.5) cl:Z(R)— G(R) defined by cl(R/p) = [R/p]

and extended linearly. We want to see how well this map describes the group G(R)
and the first step in this regard is:

Proposition 1.4.6. Let R # 0 be a Noetherian ring. Then the homomorphism
c:Z(R) — G(R)
of (1.4.5) is a surjection.

Before proving the proposition, we prove the following lemma which will be
used both in the proof and a few times throughout the remainder of this section.

Lemma 1.4.7. Let L, M, N be three R-modules fitting into an exact sequence

0=L5MI N0

Suppose that N' C N is any R-submodule with inclusion j : N' C N. Then there
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is an R-submodule M' C M and a commutative diagram

0 0
M/M' == N/N'
(1.48) 0 » L ——— M ~— N > 0
H f’
0 > L > M’ > N’ > 0
0 0

with both horizontal rows, and vertical columns, exact sequences.

Proof. We set M’ = M x N’ to be the fiber product of R-modules, i.e. M’ is the
subset of the product M x N’ consisting of all pairs (a,b) with m(a) = j(b). Then
M’ is naturally an R-submodule of the product M x N’ and composing with the
two projections to M and N’ form the respective vertical and horizontal arrows
from M’ in (1.4.8).

We leave it as an exercise for the reader to check that the diagram commutes
and that both the rows and columns are exact (see Exercise 1.4.2); we also point
out that M’ is naturally identified with the preimage 7= *(N') C M. O

Proof of Proposition 1./.6. Let M # 0 be a finitely generated R-module. Consider
Anng(z) ={f € R: fr =0},

i.e. the ideal of R which is the annihilator for the element z of M. The collection
of ideals {Anng(x)}zcm\ 0}, where z € M ranges over all nonzero elements, has a
maximal element since R is Noetherian. Let p; = Anng(y;) be any such maximal
element for some nonzero y; € M. Then p; C R is a prime ideal: if f,g € R are
such that (fg)y; = 0, then either gy; = 0 or gy; # 0; in the latter case there’s a
containment Anng(gy;) O Anng(y;), which must actually be an equality by our
choice of y, so that f(gy;) = 0 implies f € p; as desired.
Setting M; = R/p;, we find a short exact sequence

0— M, 2% M N, — 0

with N; the appropriate cokernel. If Ny # 0, then as before we can find a prime
ideal of the form py, = Anng(y2) but now for some y, in Ny. Let My C M be the
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preimage of R/py C N;. We have that My /M; = R/ps by Lemma 1.4.7. Repeating
this process we get a sequence of submodules of M

O=MyCcM,C---CM;,C---CM

with associated quotients M;,1/M; = R/p;11 and with N; := N;_1/(M;/M;_).
Since M is finitely generated and R is Noetherian, the chain of M;’s must stabilize
after some n > 0 steps; at this point we must also have N,, = 0 because if there
was a nonzero z € N, the ideal Anng(z) C R would be proper and M,, /M, # 0.
Altogether this gives an equality

[M] = [N1] + [R/p1]
= [Ng] + [R/px] + - + [R/p1]

= [R/pn] + -+ [R/pi]

inside of G(R). As we’ve shown an arbitrary generator of G(R) can be written as
a sum of elements in the image cl(Z(R)), this completes the proof. O

We’ll come back to an observation made in this proof momentarily, but first
we see some examples.

Remark 1.4.9. Let R be an integral domain. Set F' = R to be the field of
fractions of R. The assignment

rk: Myy(R) = Z M~ dimp(Myy),

sending an R-module M to the dimension of the localization M) as an F-vector
space, is zero on M., (R). It therefore defines a homomorphism

tk: G(R) = Z
which we call the rank homomorphism for R.

Example 1.4.10. Suppose that R is a PID. The same argument that was used
in Example 1.2.5 but, using the rank homomorphism for G(R) instead of K(R),
shows that G(R) = Z with the class [R] an additive generator.

Example 1.4.11. Let R = Z[x] be the integral polynomial ring in one variable.
The Krull dimension of R is 2 and we can describe the sets Spec(R)™ explicitly

60



for each of n =0,1,2. They are:

Spec(R)"” = {(0)}
Spec(R)M = {(p), (f(x))}p.s with p prime or f(z) irreducible
Spec(R)® = {(p, f(x)},s with f(x) irreducible modulo p.

By Proposition 1.4.6, it follows that G(R) is generated by the classes of
Zl), Fle), Zl)/f(x), and F,

where [, is the finite field of ¢ elements for a power ¢ = p" of a prime p and n > 1.
But, there are short exact sequences

0= Z[z] =5 Z[x] — F,z] — 0
0 = Z[z] 2% Z10] — 202/ (F(2) — 0

IO g 2] —» F, — 0

0— F,lz]
which show that
[Fplel] =0, [Z[x]/(f(2))] =0, and [Fy] =0
inside of G(R). Since rk([Z[z]]) # 0, it follows that G(R) = Z.

Returning to part of the proof of Proposition 1.4.6, we observed there that for
any given Noetherian ring R # 0, each finitely generated R-module M admits a
finite ascending filtration M, by R-submodules,

0=MyC M C--CM,=DM,

with the property that M;.,/M; = R/p;41 for some prime ideals py, ..., p, of R.
This type of filtration is useful enough to have a name:

Definition 1.4.12. Let M be an R-module for a ring R # 0. A finite ascending
filtration M, of M,

M.E(OZM()CM1C"'CMRZM)
is called a prime filtration of M if for each ¢ > 0 there is a prime ideal p,.1 C R

and an isomorphism M, /M; = R/p;1 of R-modules.
Given a prime filtration M, of M as above, we write

cyc(M,) = Z 1-R/p, € Z(R)
i=1
and call this sum the cycle associated to the prime filtration M,.
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Let p C R be a prime ideal and pick an element f € R\ p in the complement.
If we set I = p + (f) then there is a short exact sequence

= f

0—>R/p —=R/p—>R/I =0

showing that [R/I] = 0 inside G(R). In particular, for any prime filtration R/I,
of R/1, the cycle cyc(R/I,) has trivial class in G(R).

We can generate all relations on Z(R) that are needed to describe the quotient
G(R) by considering cycles of this type only. Specifically, let 0Z(R) C Z(R) be
the subgroup generated by all cycles cyc(F,) coming from a prime filtration F, of
a quotient R/(p + (f)) and varying over all prime ideals p C R and all f € R\ p.
Then there is the following:

Proposition 1.4.13. Let R # 0 be a Noetherian ring. Then the surjection
c:Z(R) — G(R)
of (1.4.5) has kernel 0Z(R).

We’ve seen that the map ¢l : Z(R) — G(R) descends to a map on the quotient
Z(R)/0Z(R) — G(R). The proof works by constructing an inverse to this map.
The most obvious choice for an inverse would be to send the class of a module
[M] € G(R) to the equivalence class [cyc(M,)] in Z(R)/0Z(R) for any choice of
prime filtration M, of M. Since there’s no canonical choice for a prime filtration
of an arbitrary module, it takes some work to check that this is well-defined.

Lemma 1.4.14. Let R # 0 be a Noetherian ring and let M be a finitely generated

R-module. Then, given any two prime filtrations A, and Bs of M, there exist prime

filtrations A, and B., refining A and B, respectively, such that cyc(A,) = cyc(BL).
(Here a filtration A, of M

A, =0=AycAjCc---CA =M)
1s said to be a refinement of a filtration
Ac=0=AC A C--- A, =M)
if for all integers i with 0 < i <n there is an integer j so that A; = A}).
Proof. Let’s write A, as
0=AgCA C---CA, =M

and B, as
0=ByCcB,C---CB, =M
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for some n,m > 0. We can then refine A, to a filtration A, by inserting terms, for
all 0 <17 < n, of the form

A=A+ (AN By) CA+ (AN By) C- CA+ (AN By) = A

Similarly we can refine B, to a filtration B, by inserting, for each 0 < j < m,
terms in the same way

Bj = Bj+ (Bj4+1 M Ao) C Bj + (Bj31NA1) C--- C Bj+ (Bjta NAn) = Bjia.

Now the Butterfly lemma implies that, for fixed ¢, 7 in the given range, we have
isomorphisms
Ai + (Aia N Bja) o, B+ (Bja N Ai)
A+ (A1 N By) B; + (Bjt1NA;)

of R-modules which means that the two filtrations A, and B] have the same
associated quotients.

At the moment, neither of the new filtrations A, nor B, is necessarily a prime
filtration of M. To fix this, let’s assume that we’ve fixed indices ¢ and j together
with an isomorphism Aj, , /A; = B}, ,/Bj. After possibly eliminating any repeating
terms in the filtrations A, and B, we can assume that these quotients are nonzero.
Hence we can fix an inclusion of some quotient R/p for some prime p C R into
both Aj,,/A; and B}, /B’ simultaneously, as in the proof of Proposition 1.4.6.

If we let A7 be the preimage of R/p under the projection A; , — A} ,/A!, and
let By be similarly the preimage in B}, then we have inclusions

A;c Al C A, and B;C B/ CBj,,.

The quotients AY/A; and By /B are both isomorphic with R/p by Lemma 1.4.7.
Since A}, /A7 = B}, ,/B{ by Lemma 1.4.7 as well, we can continue this process
until we have chains

AjCcAlC---CA/CA},, and B;CB/C---CB CB},

with isomorphic associated quotients and so that all associated quotients have the
form R/p for possibly varying prime ideals p C R. Doing this at every step of the
filtrations A, and B. allows us to construct new filtrations, say A” and B! with
the desired properties. O

Lemma 1.4.15. Let R be any ring and let M be an R-module. Suppose that A,
is any prime filtration of M and suppose A, is a prime filtration of M refining A,.
Then

[cyc(As)] = [eyc(AL)]  inside Z(R)/0Z(R).
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Proof. Let’s write A, as
0=ACcAC---CA, =M

and let’s fix an index 0 < ¢ < n where the inclusion A; C A;;; is refined. In other
words, in the filtration A, there is an index j and an integer k > 1 so that

Our goal is to compare the associated quotient A;.;/A; of the filtration A, and
the quotients A’ /A", for all 0 <7 <k of the filtration Aj.
Taking the quotient of each term in the chain (1.4.16) by A’ produces a new
chain with the same associated quotients
Ay A A A ~ A

(1.4.17) 0=—C C---C = :
AT A Al A4

Since both A, and A, were prime filtrations, we have that A;.1/A4; = R/p and

A% /AL = R/q for some prime ideals p, g C R. But, for two ideals I, J & R with

J prime, an inclusion R/I C R/J of R-modules can happen if and only if I = J.
This means there is a commutative diagram with exact rows as below.

00— R/p —L 4 RJp s R/(p+ (f)) —— 0

If we quotient terms in the chain of (1.4.17) by A ,/A}, and omit the first zero
term, we end up with a chain like

Al Al Al
(1.4.18) 0=-JcI2c...c Ex=p/p+(f).
Al Ay Al

Now the chain in (1.4.18) has all the same associated quotients as (1.4.17) except
for the first one that was isomorphic with R/p. In particular, the chain in (1.4.18)
is a prime filtration for R/(p + (f)).

Altogether this shows that the associated quotients of (1.4.16) are precisely
one copy of R/p together with the quotients associated with some prime filtration
for some module of the form R/(p + (f)). Hence the difference cyc(A,) — cyc(4.)
is made up exactly of sums of those cycles generating 0Z(R). m

Proof of Proposition 1.4.15. Define a map My,(R) — Z(R) by sending [M] to any
cycle cyc(M,) for a fixed prime filtration M, of M. Projecting to the quotient gives
a map

Myy(R) = Z(R)/0Z(R)
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which is independent of this choice. Indeed, if A, was another prime filtration of
M then by Lemma 1.4.14 there are refinements A, of A, and M| of M, so that
cyc(AL) = cye(M]) in Z(R). Applying Lemma 1.4.15 twice, we see that

[eye(As)] = [eye(A,)] = [eye(M,)] = [eye(M.)] € Z(R)/0Z(R)

showing independence of any choices.

Next, we observe the map My,(R) — Z(R)/0Z(R) induces a map from G(R)
by checking that the image of M., (R) is trivial in Z(R)/0Z(R). So assume there
is a short exact sequence

O0—=L—M-—=>N-—=0

of finitely generated R-modules and fix prime filtrations L, of L and N, of N.
We'll show that L, and N, induce a prime filtration M, of M so that there is an
equality cyc(M,) = cyc(N.) + cyc(Ls) as cycles in Z(R).
Write L, as
O=LypCc---CL,=1L

and N, as
0=NyC---CN,,=N.

Then applying Lemma 1.4.7 with N’ = N,,_; shows that the preimage of N,,_; in
M is an R-submodule M, ,,—1 C M with isomorphisms M /M, -1 = Ny /Np—1
and M, 1—1/L = N,,—1. Applying 1.4.7 again, now to the short exact sequence

0—=L—=>Mym1— Ny —0

and the inclusion N,, o C N,,_1, produces an R-submodule M, 1, o C M1
with My, m—1/Mpsm—2 = Np1/Npm—o and M,y o/L = N,,, 5. Continuing we
get a chain of R-submodules making up part of a prime filtration M, of M

L=M,C---CMy =M

with quotients M, j1/M,4; = N;1q1/N; for all 0 < j < m. We complete the
construction of M, by setting M; = L; for all 0 < i < n.

Finally, it follows that there is a well-defined morphism G(R) — Z(R)/0Z(R)
sending [M] to the class [cyc(M,)] for any prime filtration M, of M. Since this
map is clearly inverse to the morphism Z(R)/0Z(R) — G(R) sending [R/p] to the
class [R/p], we are done. O

The next theorem shows that if R is an integrally closed Noetherian domain,
then we can recover the divisor class group CI(R) as a subquotient of G(R) using
the description of G(R) as a quotient of the group of cycles Z(R). This result can
be viewed as the first true hint that the group G(R) is intimately tied to geometry,
however, it is only one piece of a much broader picture.
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Theorem 1.4.19. Let R # 0 be an integrally closed Noetherian domain. Then
there are subgroups

F?G(R) C F)G(R) c G(R)
and canonical isomorphisms
G(R)/F!G(R)=7Z
F'G(R)/F?G(R) = CI(R).
Proof. We set F!G(R) to be the subgroup of G(R) generated by all of the images

cl(Z™(R)) for every n > 1. Then we have a commutative diagram with exact rows
and surjective vertical arrows.

0 — P2 (R) — Z(R) —— Z-R —— 0

(1.4.20) = ld ld l

0 —— FIG(R) —— G(R) —%— 7 > 0

Exactness of the bottom row is a consequence of the fact R/p®r Ry = 0ifp C R
is any nonzero prime ideal. This gives the first isomorphism of the theorem.

Similarly, we set F2G(R) C F'G(R) to be the subgroup of G(R) generated by
the groups cl(Z™(R)) for all n > 2. We again have a commutative diagram with
exact rows and surjective vertical arrows

0— P 2YR) — P2 (R) ———— ZY(R) ————— 0

n>2 n>1
lcl lcl l

0 —— F?G(R) —— F!G(R) —— F!G(R)/F*G(R) —— 0

and, by Remark 1.4.4, the group Z'(R) = WDiv(R). Note, because of the diagram
(1.4.20) above, the kernel of the map

c: @ 2"(R) — FIG(R)
n>1

is isomorphic to Z(R). We'll show that the relations 9Z(R) in Z'(R) = WDiv(R)
generate a subgroup isomorphic with div(#*), where F' = R(q) is the fraction field
of R, giving the isomorphism with CI(R).

The subgroup 0Z(R) is generated by cycles of the form cyc(F,) coming from a
prime filtration F, of a quotient R/(p+ (f)) and varying over all prime filtrations,
prime ideals p C R, and elements f € R\ p. Given one such cycle, say

cye(F) =3 _1-R/pi € D 2"(R),

n>1
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the image of cyc(F,) in Z'(R) is the sum of those summands 1 - R/p; with prime
ideals p; C R having ht(p;) = 1. If ht(p) > 1, then any prime ideal p; appearing
in such a prime filtration F, contains p strictly and so has height at least 2. Thus
the images of all such cycles vanish in Z'(R).

This means that the kernel of the map

ZY(R) — FG(R)/F*G(R)

is generated by the images of cycles cyc(F,) where F, is a prime filtration of a
quotient R/fR for some element f € R\ {0}. So let p C R be a prime ideal with
ht(p) = 1, let f € R\ {0} be given, and let F, be a prime filtration of R/fR.
Then, localizing the filtration F, at p produces a filtration (F,), of R,/fR, whose
associated quotients are either 0, R, or R,/pR, = R/p. Moreover, the number of
occurrences of the quotient R/p in the two filtrations F, and (F}). are the same.

We claim that the number of times R/p occurs as a quotient from the filtration
(F})e is uniquely determined by f and equal to ord,(f). If this were true then the
class of cyc(F,) inside Z'(R) is exactly the sum

> ordy(f)R/p.

pCR
ht(p)=1

As cycles of this type, varying over all f € R\ {0}, generate the corresponding
subgroup div(F*) C WDiv(R) this would complete the proof.

The filtration (F})e is an ascending filtration of R,/fR, which starts with 0,
ends with R,/(7"), and which has associated quotients either 0, R,, or R,/pR,.
Since R, is a DVR, as R is integrally closed, we can pick a uniformizer 7 for pR,
and write f = un” for some unit v € R, and for some r > 0. This allows us to
write R,/fR, = R,/(n"). As an R,-module, any ascending filtration of R,/(7")
which starts with 0 and ends with R,/(7") and which has associated quotients
either 0, Ry, or R,/pR, = R/p contains exactly r-terms with associated quotients
R,/pR, = R/p. But ordy(f) = v.(f) = r as claimed. O

Corollary 1.4.21. Let R be a Dedekind domain. Then G(R) = Z @ CI(R).

Proof. In the proof of Theorem 1.4.19, we observed that the subgroup F2G(R) of
G(R) was generated by classes [R/p] for prime ideals p C R of with ht(p) > 1.
However, in a Dedekind domain there are no such prime ideals so F?G(R) = 0. [

EXERCISES FOR SECTION 1.4

1. Prove that G(R) = 0 if R = 0 is the zero ring.
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2. Complete the proof of Lemma 1.4.7. In the notation of the lemma, prove also
that M’ can be identified with the preimage 7= *(N') C M.

3. Let R be aring and let C, be a bounded complex of R-modules (recall that for a
complex C, given by a collection of R-modules C;, specified for all integers i € Z,
together with a collection of morphisms d; : C; — C;_; satisfying d; o d;;1 = 0,
then C, is said to be bounded if there exists an integer N > 0 so that C; = 0
for all integers ¢ with |i| > ). Show that there is an equality inside G(R)

D (—UICT =) (-1 [Hi(C,))

€L €L

between the alternating sum of the terms of C, and the alternating sum of the
homology of C,.

4. Let f : R — S be a morphism of rings R and S which realizes S as an R-module.

(a)

Assume that S is finitely generated as an R-module. Show that there is a
well-defined group homomorphism

cory : G(S) — G(R)

induced by the map M;,(S) — M;,(R) which sends an S-module M to
M considered as an R-module via f.

If g : S — T is another morphism of rings which realizes T" as a finitely
generated S-module, then show that T is a finitely generated R-module.
Prove there is an equality corf o cory = corft.

Assume instead that S is flat as an R-module. Show that there is a well-

defined group homomorphism
resy, : G(R) — G(S)

induced by the map My,(R) — My,(S) which sends an R-module M to
the S-module M ®pr S.

If g : S — T is another morphism of rings which realizes T" as a flat
S-module, then show that T"is a flat R-module. Prove there is an equality

T S — resl
resg o resy = resg.

5. (Projection formula). Let R be a ring. Consider the map

p: K(R) = End(G(R))  [P] = ([M] = [M @g P)

from K(R) to the endomorphism ring of the group G(R). Prove that the map
p is a ring homomorphism. Hence the group G(R) is naturally a K (R)-module.
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Let S be another ring with f : R — S a ring homomorphism. Assume that
S is a finitely generated R-module. Show that for any two elements x € K(R)
and y € G(R) there is an equality

corf (resh(z) - y) = x - corf(y)

using the map res3, : K(R) — K(S) of Exercise 1.2.3.

. Let R be a commutative Noetherian ring and let I C R be a nilpotent ideal,
i.e. an ideal having the property that I™ = 0 for some n > 1.
(a) Prove that the homomorphism

Corg/l :G(R/I) — G(R)

defined in Exercise 1.4.4 is an isomorphism. Compare with Exercise 1.2.8.
(Hint: for any R-module M, the quotients I* M /I*+1 M have the structure
of an R/I-module; consider the function G(R) — G(R/I) that sends a
class [M] to Yoo [IFM/I*1M]).

(b) Use part (a) to prove a converse to Exercise 1.4.1 for a Noetherian ring R,
i.e. show that a Noetherian ring R has the property G(R) = 0 only if R = 0.

. (Gysin morphism). Let R be a ring and let f € R be any element of R which
is not a zero-divisor in R. Let 7 : R — R/ fR be the canonical projection map.
In this exercise we construct a group homomorphism

T G(R) = G(R/fR)  [M]w [M/fM]~ [Tor{(R/fR, M)]

called the Gysin morphism of m.
(a) Let M be an R-module and let I C R be an ideal. Show that Torf(R/I, M)
is isomorphic with the kernel of the R-module homomorphism

I ®pr M — M f®m— fm.

Conclude that Torf(R/fR, M) is isomorphic with the R-submodule M {f}
of M consisting of all elements m € M such that fm =0 in M.
(b) Let L, M, N be three R-modules fitting in an exact sequence

0—+L—-M—=N—=0.
Prove that there is a long exact sequence

0— L{f} - M{f} > N{f}—=>L/fL—- M/fM - N/fN — 0.
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(c) Define a map

Myy(R) = G(R/fR) M — [M/fM] = [M{f}]

Use parts (a) and (b) of this exercise to show that this descends to give
the map 7' : G(R) — G(R/fR) defined above.

8. (Homotopy invariance of G-theory). Let R be a Noetherian ring and let R[z]
be the ring of polynomials in the single variable x over R. We will show that
the map

resi” . G(R) — G(Rz))

of Exercise 1.4.4 is an isomorphism with inverse the map 7' : G(R[z]) — G(R)
of Exercise 1.4.7 associated to 7 : R[x] — R which sends z to 0.

(a)

Prove that the composition

Rz
res

", G(R[z]) D> G(R)
is the identity on G(R). Hence the map resh”
Consider the set of prime ideals of R defined as

G(R)

is injective.

P ={qN R : q € Spec(Rz]) is such that [R[z]/q] ¢ Tm(resy")}.

Then resgm is surjective if and only if P = (). Suppose, for a contradiction,

that P # (). Then, since R is Noetherian, there is a maximal element p € P
with regards to containment.

Let p = gN R. Mimic the strategy from (b) of Exercise 1.3.11 to argue
q 2 pR[x] and prove that there is an element g € q such that

q = {f € R[z] : there exists a € R\ p so that af € (g) + pR[z]}.
Now there are exact sequences
0 — Rlz]/pR[z] = Rla]/pR[z] — R[z]/(pR[z] + (9)) = 0

and
0 — ker(p) — R[z]/(pR[z] + (9)) = Rlz]/q — 0.

Prove that ¢ becomes an isomorphism after localizing at the multiplicative
set R\ p. Since ker(yp) is finitely generated, this implies that there is an
element h € R\ p so that h - ker(p) = 0. By considering a prime filtration
of ker(¢p), prove that [R|x]/q] is in the image of resgm. As this contradicts
the assumption that p € P, we must have P = ().
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9. Let k be a fixed algebraically closed field and set R = k[z,y]/(y*—2?). Following
Exercise 1.2.10, identify R with k[t? 3] C k[t] by the map f : R — k[t] which
sends f(x) = t* and f(y) = ¢3. The ring k[t], considered as an R-module,
is generated by 1 and t so any finitely generated k[t]-module is also a finitely
generated R-module with respect to the map f.

Consider the induced map

corkR[t] : G(k[t]) = G(R) where [M]w— [M]

which considers any k[t]-module as an R-module with respect to f. Prove that
corkR[t] is surjective and prove that there is an isomorphism G(R) = Z.

1.5 REGULAR RINGS

Let (R, m) be a Noetherian local ring. Then m has finite height, see Remark 1.4.4,
which is necessarily also equal to the Krull dimension of R, i.e. Kr. dim(R) = ht(m).
If (z1,...,x,) = mis a minimal set of generators for the maximal ideal of R, then by
Nakayama’s Lemma [AMG9, Proposition 2.8] we have dimp/y(m/m?) = r. Hence,
by Remark 1.4.4 again, there is an inequality

(1.5.1) Kr.dim(R) < dimp/m(m/m?) = r.

We say that (R, m) is a regular local ring if the inequality in (1.5.1) is an equality.

This is related to a descending filtration Fa(R) on R induced by taking higher
powers of m, i.e. for any 7 > 0 we have F!(R) = m’; here m® is defined to be R.
Associated to this filtration is a graded group gr,,(R) defined as

gra(R) = @ eri(R) where gri(R) = Fi(R)/Fat'(R) = m'/m**.

1>0

The group gr,(R) can further be given the structure of a graded ring with the
following multiplication: if z € m’ and y € m/ are elements with images Z, 7 in
gri (R) and gr? (R) respectively, then the product 7 - ¢ is defined as the image Ty
of zy inside gri7(R); this is well defined since if 2’ is another element with image
T in gr’ (R) then z — 2’ is contained in m*™!.

An equivalent condition for a Noetherian local ring (R, m) to be regular is then
that there is an isomorphism gr, (R) = (R/m)[ty, ..., ) with the polynomial ring
over R/m in d = Kr.dim(R) many independent variables [AM69, Theorem 11.22].
Consequently, this result implies that a regular local ring R is an integral domain:
if z €m’\ m™ and y € m/ \ mT! are nonzero elements with nonzero images z, §
in gri (R) and gr? (R), then Ty # 0 in grif7(R) so that xy # 0 in m*7 C R.
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Definition 1.5.2. Let R be a commutative ring. We say that R is a regular ring
if, for every prime ideal p C R, the local ring R, is a regular local ring.

Our interest in regular rings comes from the following theorem which says that,
for a regular ring R, the groups K(R) and G(R) are canonically isomorphic.

Theorem 1.5.3. Let R be ring. Write
vr: K(R) = G(R)  [P]— [P]

for the group homomorphism induced by the canonical inclusion Pr,(R) C My,(R).
If R is a regular ring with Kr.dim(R) < oo, then ¢gr is an isomorphism.

We will prove Theorem 1.5.3 much later in this section, after a healthy amount
of effort is devoted to developing both the homological and algebraic properties of
regular local rings. For now, in order to give context to their definition, we make
some immediate remarks on regular local rings and their global counterparts.

Remark 1.5.4. For aring R, the property of being regular is intimately connected
with the lack of singularities of the affine scheme Spec(R). To be precise, recall if
R is a finitely generated k-algebra, for a field k, then the tangent space to a point
p € Spec(R) is the R, /pR,-vector space

Tspec(r),p = Hompg, (Qr/kp, By /P Ry)
where g/, is the R-module of Kéhler differentials of R over k. When R, /pR, is

a separable field extension of k there is also an isomorphism Qg/, = pR,/p*R,
by [Stal9, Tag 0B2E]. Combining these, we get that the tangent space at a point
p € Spec(R) has the same dimension as the local scheme Spec(R,) if R,/pR, is
separable over k and R, is regular. The converse also holds if the field k is perfect,
e.g. if the characteristic of k is zero or if k is a finite field.

Remark 1.5.5. If R is a finitely generated k-algebra, for a field k, and if m C R
is a maximal ideal of R with R/m = k, then the graded ring gr,r (Rn) is the
coordinate ring of the tangent cone to Spec(R) at the point m.

As a special case, suppose that there is a surjective ring map

¢ : k[.l?l, ,xn} — R

realizing Spec(R) C A} as a closed subscheme passing through the origin of A7,
so there is a maximal ideal m C R with ¢~!(m) = (x,...,x,). The graded ring
8lmr,, (Fm) then admits a map

¢ klxy, ..., xy] = grup (Rum) = Gami/miJrl z; — ¢(x))

>0
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which realizes Spec(gr,z (Rn)) as a closed subscheme of A} also passing through
the origin. If R is an integral domain, then the Krull dimensions of these schemes
are all the same

Kr.dim(R) = Kr. dim(R) = Kr. dim(gr,z_(Rm));

the first equality on the left, which requires the integral domain hypothesis, holds
by [AM69, Theorem 11.25] and the second, which is true more generally without
the integral domain hypothesis on R, by [Eis95, Corollary 12.5].

Example 1.5.6. If R is a Noetherian ring having Kr.dim(R) = 0, then R is
regular if and only if R is a finite product of fields. In general, if R and S are two
regular rings, then R x S is again a regular ring and, conversely, if a product R x .S
is regular then both R and S are regular too.

Suppose now that R is a regular Noetherian ring with Kr.dim(R) = 1. If we
decompose R into a product of rings so that each of the factors has connected
spectrum then we could write

RE¥R x-- xR, xF x---xF,

for regular rings R;, with Kr. dim(R;) = 1, and fields F;. Each ring R; must have a
unique minimal prime ideal since if two distinct minimal prime ideals p, q existed
in R; there would be a maximal ideal m containing both p, q which implies that
the localization Ry, is not a domain [AM69, Proposition 4.7].

Now each of the rings R;, over the varying 1 <14 < n, is necessarily a domain:
since R; is regular we know that R; is reduced, as this holds locally; if p; is the
unique minimal prime ideal for R;, it follows p; is the set of all nilpotent elements
of R;, i.e. p; = (0). Also, if m C R; is any maximal ideal then dimp, /m(m/m?) = 1.
This latter condition is equivalent to the localization (R;)n, being a DVR [AMG9,
Proposition 9.2] and, hence, R; is integrally closed. Thus a Noetherian ring R with
Kr.dim(R) = 1 is regular if and only if R is the finite product of some Dedekind
domains and fields.

Proposition 1.5.7. Let (R, m) be a Noetherian local ring and suppose that gr,,(R)
1s an integrally closed domain. Then R is integrally closed as well. Therefore any
reqular local ring, and any reqular integral domain, is integrally closed.

Proof. Assuming that gr, (R) is an integral domain, it follows that R is also an
integral domain using the same argument as above Definition 1.5.2. Let f = g/h
be an element in the fraction field F' = R of R and suppose that f is integral.
We need to show that f is contained in R and, to do this, we’ll show that g is
contained in the ideal (h) C R.
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More precisely, we're going to show that g is an element of the ideal (h) +m
for all # > 0. It then follows that

(1.5.8) g€ () ((h) +m’) = (h).

i>0

The equality of ideals in the above is clear if (h) = R and otherwise comes from
[AMG9, Corollary 10.19] which says that the intersection of all nonnegative powers
of the maximal ideal in R/(h) is equal the zero ideal of this quotient. The proof
now boils down to the following claim:

Lemma 1.5.9. Let (R, m) be any Noetherian local ring with gr,(R) an integrally
closed domain. Let f be an element of the fraction field F' = R which is integral
over R and write f = g/h for some g,h € R.

In this setting, if there exists an element u € R so that h(f —p) € m*, for some
integer i > 0, then there exists an element ' € R so that h(f — p') € m**1.

Proof. Since f is integral over R, there is a relation
P4y fft 4+ 41 =0, forsomery,....,rn1 € R,

and for some n > 1. Setting ¢ = h"~! we have cf™ € R for all m > 1. If y is given,
then similarly ¢(f — p)™ € R for all m > 1 since we can expand this expression
using the binomial theorem.

For any m > 1, multiplying c¢(f — p)™ by h™ gives

(1.5.10) R e(f =)™ = c(h(f — @)™ = c(g — hp)™.

Let j > 0 be such that ¢ € m7 \m™! and let ¢ # 0 denote the image of ¢ in grl (R).
Similarly, let k be such that h € m* \ m**! and h # 0 the image of h in grk(R).
We write w € gr’, (R) for the image of g — hy = h(f — p) € m'.

Fix an integer m > 1 and let [ = m(i — k) + j. One might expect from (1.5.10)
that the element c(f — )™ is contained in m!. This is the case, as we now show.
Suppose, on the contrary, that c¢(f — )™ isn’t contained in m‘. Then c(f — pu)™
is necessarily contained in m* \ m**! for some 0 < s < [. If we write ~,, for the
image of c¢(f — )™ in grs (R), then h™v,, # 0 since gr,,(R) is an integral domain.
However, the element h™,, is also the image of c(g — hy)™ in gr¥™**(R), because
of the equality (1.5.10), which must be 0 since ¢(g — hu)™ is contained in m*m+!
and km + 1 > km + s + 1; this is a contradiction.

For every m > 1, we can therefore set 7, to be the image of ¢(f —p)™ in grl (R)
where [ = m(i — k) + j. The equality in (1.5.10) then shows that h™vy,, = ew™.
Hence the element w/h of the fraction field of gr,, (R) has the property that ¢(w/h)™
is contained in gr, (R) for all m > 1. Since ¢ # 0, this implies that w/h is an
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integral element over gr, (R). Indeed, since ¢(w/h)™ is contained in gr, (R) for all
m > 1, we have a containment

gtn(R)[w/h] C (1/0)gry(R)

of gr,,(R)-submodules of the fraction field of gr,(R). Since gr,,(R) is Noetherian,
by [AMG69, Proposition 10.22], this implies that gr,,(R)[w/h] is finitely generated.
Hence w/h is integral over gr,,(R) by [AM69, Proposition 5.1].

Now, as gr,,(R) is integrally closed, the element w/h is contained in gri=*(R).
Thus there exists an element r € m*~* with image w/h in gri-*(R) which satisfies
g — hp —rh € m*t. Setting 1/ = . — r completes the proof. O

To finish the proof for Proposition 1.5.7, we set = 0. Then h(f —p) =hf =g
is contained in m’ for some i > 0 so that g is also contained in (h) + m’ for all
0 < j <i. By Lemma 1.5.9, we can find an element z’ in R so that

hf—p)=hf—hy'=g—ht

is contained in m**1. Hence g € (h)+m*™'. Applying Lemma 1.5.9 again, this time
using 4" as our starting point, we can find an element p” so that h(f—p") = g—hy”
is contained in m™2. Hence g € (h) + m'™. Continuing in this way, we find that
the containment of (1.5.8) is satisfied so that f is an element of R as desired. [

i+1

Our goal now is to prove Theorem 1.5.3 but, before we do this, we're going
to develop the homological theory of regular local rings from scratch. The main
result that we need, in this direction, is a fundamental theorem, due to Auslander,
Buchsbaum and Serre, which shows that a Noetherian local ring is regular if and
only if every finitely generated module admits a finite resolution by free modules.
Once the local theory has been built, we’ll show how one can reduce some problems
in homological algebra for regular rings from the global case to the local case. This
will finish our preparation for the proof of Theorem 1.5.3.

Along the way to proving Theorem 1.5.3, we show how the cumulative theory
that we’ve developed so far in this chapter can be used to obtain nontrivial results
on the structure of regular rings. Namely, we show how one can use the results of
Sections 1.3 and 1.4 to prove that regular rings are locally factorial, a fact that we
alluded to in Section 1.3. Independently of this, we also determine the structure of
the K-theory of a Dedekind domain and show how the isomorphism of Theorem
1.5.3 can be viewed as a natural extension of the isomorphism from Theorem 1.3.27
between the Picard group and the divisor class group for these rings.

REGULAR LOCAL RINGS

At the moment, let R be any ring. If M is an R-module, then we say that M admits
a resolution by finitely generated projective R-modules if there exists a collection
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{P;}i>0 with each P; a finitely generated and projective R-module together with
an exact sequence (possibly infinite):

=Py =P —=--—=P—=-F—=M-=0.

We say that M admits a finite resolution by finitely generated projective R-modules
if there exists such a resolution with the property that there is an integer N > 0
so that P, = 0 for all n > N. When there’s no risk of being confusing, we’ll call
such a resolution simply a finite resolution. A finite resolution of an R-module M
is said to have length N > 0 if Py # 0 and P, = 0 for all n > N.

Definition 1.5.11. Let R be a ring and let M # 0 be an R-module. If M admits
a finite resolution by finitely generated projective R-modules, then the projective
dimension of M is defined as the number

pdg(M) := min{n € Zs : there exists a finite resolution of M with length n}.

If M does not admit a finite resolution, then we say that M has infinite projective
dimension and we write pdz(M) = oo. By convention, we set pdz(0) = —1.

The following theorem is often called the Auslander-Buchsbaum Theorem.'

Theorem 1.5.12. Let (R, m) be a Noetherian local ring. The following conditions
are then equivalent for the ring R:

(1) R is a regular local ring,

(2) each finitely generated R-module M has finite projective dimension,

(3) pdg(R/m) < oo.

Proving this theorem will take some work. The equivalence between the above
is gotten by showing that (1) implies (2) implies (3) implies (1). However, condition
(2) of Theorem 1.5.12 clearly implies (3) since R/m is a finitely generated R-
module. This means that there are only two remaining implications that need to
be justified. We’ll prove (1) implies (2) first since this will give us an opportunity
to introduce some more terminology. Then, and this is the more difficult part of
the proof, we’ll show that condition (3) implies (1).

For any ring R and for any R-module M, we can always construct a resolution
of M by free R-modules of possibly infinite rank. To do this, one can choose a
generating set {z; };ecy, for the R-module M indexed by a set Iy. This corresponds
to a surjection ¢y : R®0 — M defined by sending the basis element e; of R®™ to
x; in M. This will be the first morphism in such a resolution. To get the next term
in the resolution, one chooses a generating set for the kernel of ¢g, say {x;}ier,,

!For some history on the problem from the perspective of David Buchsbaum, see [Buc].
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indexed by a set I;. There’s then a similarly defined map ¢; : R®"* — R®0 with
image exactly the kernel of ¢y. Repeating this procedure yields a, possibly infinite,
exact sequence

(1.5.13) oy ROLm L pol L RO % g

Any exact sequence that’s constructed in this way will be called a free resolution
of the R-module M.

Now we specialize to the case (R, m) is a local ring. In this case, any resolution
of an R-module M by finitely generated projective R-modules is a free resolution.

Definition 1.5.14. Let (R, m) be a local ring and let M be an R-module with a
free resolution

) o )
coo s ROLw SN pOL L ROl 20 Ar ),

We say that this free resolution is a minimal free resolution of M if, for each 57 > 0,
one has ¢; ® idg/m = 0 for the morphism obtained by tensoring ¢; with R/m.

In order to construct a minimal free resolution for an R-module M over (R, m),
it suffices, in the construction of a free resolution like (1.5.13), to choose, for each
Jj >0, aset [; indexing a minimal generating set for the kernel ker(¢;_;). Indeed,
if {2;}icr; is a minimal set of generators from the jth step in this construction,
then the morphism ¢; has the property that ¢;(R®%) C mR®%i-1 whenever j > 0.
To see this, let {x;}ic7,_, be minimal and consider the exact sequence

RGBIJ'H M R@Ij f9_> R@ijl‘

An element Y7 7€, with r; € R and with the e;, basis elements of R’/ is in
the image of ¢, if and only if Y 1" 7 2, = 0 in R¥li-1. If we assume, without
loss of generality, that the element r;, was contained in R\ m then r;, would be a

unit and we could write
m
1
Ly = T E Ti,Li,
u s=2

inside R®%i-1. As this contradicts the minimality of {;};c 1,_1, we must have that
all the coefficients r;, are contained in m for all 1 < s < m.

Remark 1.5.15. If (R, m) is an arbitrary local ring and if M is an R-module, then
it’s not obvious that there exists a minimal generating set for M. If M is finitely
generated, however, then the existence of a minimal generating set is immediate.
So, if (R, m) is a Noetherian local ring and if M is a finitely generated R-module
then a minimal free resolution of M (by free R-modules of finite rank) exists.
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Proposition 1.5.16. Let (R, m) be a local Noetherian ring and let M # 0 be a
finitely generated R-module. Then the following are either all infinite or all finite:
(1) the length of any (and hence every) minimal free resolution of M
(2) the supremum sup{n € Zsq : Tor®(M, R/m) # 0}
(3) the projective dimension pdg(M)
Moreover, if any of the above is finite then all three of these numbers are all equal.

Proof. Pick one minimal free resolution of M, say
o= P=- =P = M—=0.

As M is finitely generated and R is Noetherian, each of the free R-modules P; has
finite rank. Tensoring with R/m and omitting the rightmost term gives a sequence

> P®rR/m — -+ = PBp®p R/m — 0

where each of the terms P, ® g R/m is a finite dimensional R/m-vector space with
dimension equal to the rank of the R-module P; and with all maps zero. Moreover,
the homology in the ith spot of this last sequence is exactly Tor’ (M, R/m).

By Nakayama’s Lemma [AM69, Proposition 2.8] a finitely generated R-module
P satisfies P ®r R/m = P/mP = 0 if and only if P = 0. So, there exists an
N > 0 so that Tor®(M, R/m) = 0 for all n > N if, and only if, in any minimal
free resolution for M, the free R-module in the nth place is zero. This proves that
either (1) and (2) are both finite and equal or both (1) and (2) are infinite.

If (3) is infinite, then a minimal free resolution for M can not have finite length.
Hence (2) is also infinite in this case. Conversely, if (2) is infinite then M can not
admit any projective resolution of finite length as otherwise Tor” (M, R/m) = 0 for
all sufficiently large n. Similarly, if (2) is finite and equal to some number N, then
a minimal free resolution of M must have length N and there can be no shorter
length resolution of M since Tor’ (M, R/m) # 0. Hence pdz(M) = N.

Finally, if (3) is finite and pdz (M) = N, then Tor®(M, R/m) = 0 for alln > N.
Thus, every minimal free resolution for M must have length less or equal to N.
But this means that every minimal free resolution for M has the same length,
equal to N, and this implies that (2) is also equal to N. ]

Corollary 1.5.17. Let (R, m) be a Noetherian local ring and let L, M, and N be
finitely generated R-modules fitting into an eract sequence

O0—=L—M-—=N—0.

If any two of the R-modules L, M, N have finite projective dimension, then all
three of the R-modules L, M, N have finite projective dimension.

Moreover, if both pdgy(M) and pdgr(N) are finite and if pdgz(M) < pdz(N),
then pdg(L) = pdg(N) — 1.
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Proof. For the first claim, notice that there is a long exact sequence

- — Tor (N, R/m) — Tor/(L, R/m) — Tor/'(M, R/m)

Tor®(N, R/m) — Tor® (L, R/m) — Tor? (M,R/m) — ---

associated with the given short exact sequence of L, M, and N. By the equivalence
of (2) and (3) from Proposition 1.5.16, if there exists a number n > 1 so that, e.g.

Torf(L, R/m) = Tor®(M, R/m) = 0

for all i > n, then Torf(N, R/m) = 0 for all i > n as well.

For the second claim, suppose that pdz (M) < pdg(N) < co. Let pdg(N) = n.
Then, from the same long exact as above, we have that Tor®(L, R/m) = 0 for all
1 > n and there is an exact sequence

0 = Tor®(M, R/m) — Tor®(N, R/m) — Tor’ (L, R/m).

Since this means that Tor’ (N, R/m) # 0 injects into Tor’ (L, R/m), it follows
that pdz(L) =n — 1. O

The proofs for both of the implications (1) implies (2) and (3) implies (1) of
Theorem 1.5.12 rely on the following observation for regular local rings that allows
one to use induction on the dimension of the ring.

Lemma 1.5.18. Let (R, m) be a regular local ring and I C R be a proper ideal.
Then the local ring R/I is regular if and only if there exists a minimal set of
generators S for m such that I is generated by a subset Sy C S.

Proof. If m = 0 then R is a field, and all is clear. So assume that Kr.dim(R) > 1.
Then, for one direction, assume that [ is generated by a subset Sy C S of a
minimal set of generators S = {x1, ..., x4} for m. If Sy is empty, then I =0 and R
is regular by assumption. Otherwise, there is some x € Sy. Since z € m we have
that x is a nonunit, non-zero divisor. Thus R/(x) is a local ring, with maximal
ideal m; = m/(x), satisfying

Kr.dim(R/(z)) = Kr.dim(R) — 1 and dimpg/m(mi/m}) = dimpg/m(m/m?) — 1

by [AMG9, Corollary 11.18]. Hence R/(x) is a regular local ring. Repeating this
argument with Sp\ {«} and R/(x), and so on, shows that R/ is regular as claimed.

For the other direction, we go by induction: assume that if R is a regular local
ring with Kr.dim(R) < d, then an ideal I C R is such that R/I is regular if and
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only if [ is generated by a subset of a minimal set of generators for m. Let R be a
regular ring with Kr. dim(R) = d, let I C R be a nonzero ideal with R/I regular,
and write m; = m/I. Choose an element z € I with z € m\ m? (at least one such
element exists since if I C m? then

dimp/m(mi/m}) = dimp/m(m/m?)

but Kr.dim(R/I) < Kr.dim(R) by Remark 1.4.4). Since Kr. dim(R) = d, we have
that Kr.dim(R/(z)) = d — 1 by [AM69, Corollary 11.18] so that R/(z) is regular.
By our induction hypothesis the ideal I/(x) is generated by a set of elements .S,
which forms a subset of a minimal set of generators S’ for m/(z). If S* denotes a
set of lifts to m of the elements of S’, then S = S* U {z} is a minimal generating
set for m. If S is a subset of S* lifting S, and Sy = S§ U {z}, then Sy C S is a
generating set for I as desired. O]

Proof of (1) = (2). To illustrate the type of inductive argument that we can
now use, we'll start the proof that if (R, m) is a regular local ring and M is a finitely
generated R-module, then pdy(M) is finite. We'll need to prove one lemma in the
middle of the proof of this implication but, it’s easier to understand why the lemma
is being proved after seeing the argument for this implication.

We go by induction on the Krull dimension of R. If Kr.dim(R) = 0, then R
is a field and M is a finite dimensional vector space over R; hence pdgz(M) = 0.
For our induction assumption, we suppose that for every regular local ring R with
Kr.dim(R) < d, and for any finitely generated R-module M, we have an inequality
pdp(M) < Kr.dim(R). For the induction step we assume that (R, m) is a regular
local ring, M is a finitely generated R-module, Kr.dim(R) = d, and we’ll show
that pd(M) < d. Since M is finitely generated, there is a surjection ¢ : R®" — M
for some integer n > 0. We denote by N = ker(¢) the kernel of this map.

From the short exact sequence

0= N—=R"™ S M0

we get a long exact sequence of Torf(—, R/m) that looks like:

- — Torl (M, R/m) — Torf(N, R/m) — Tor/(R®", R/m)

Torf(M, R/m) — Tor? (N, R/m) — Tor? (R®", R/m) — ---
and which ends on the right with

- Torf'(M, R/m) = N @z R/m — R®" @r R/m — M ®r R/m — 0.
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Since Torf(R®" R/m) = 0 for all i > 1, the long exact sequence above yields
isomorphisms

(1.5.19) Tor;(M, R/m) = Tor;_1(N, R/m)

for all « > 2. We’re going to use this observation in a dimension shifting argument
along with the characterization of projective dimension given by the equivalence
of (2) and (3) from Proposition 1.5.16. For this we’ll need the following lemma:

Lemma 1.5.20. Let R be any ring, and let P and Q) be two R-modules. Suppose
that x € R has the following properties:

(1) x is not a zero divisor in R,

(2) the map -x : P — P which sends y € P to yx has trivial kernel,

(3) z@Q = 0.

Then, for all i > 0, there is a canonical isomorphism
Torf (P, Q) = Torf/(m)(P/xP, Q).
Proof. By (1), the sequence
(1.5.21) 0—+R5R—R/(z) =0
is exact. Find a resolution of P by free R-modules {P;};>¢ like
o= P=- =2 F =P =0
and let P, denote the complex omitting the rightmost term:
o= P = B — 0.

Tensoring each of the R-modules P; of the complex P, by the sequence (1.5.21)
allows us to construct a short exact sequence of complexes

0— Po = Po — Po @r R/(z) — 0.

Accordingly, there is a long exact sequence in homology [Wei94, Theorem 1.3.1]

xT

(1.5.22) -+ = Hy(Pa) = Hy(Pa) = Ho(Pe @ R/ (7)) = Hyp1(Pe) = -+
which ends with
o= Hi(Po®@g R/(z)) = P P— P®g R/(z) — 0.

From (1.5.22) and our assumption (2), we find that P, @5 R/(x) is then a free
resolution of the R/(x)-module P®@gr R/(x) = P/xP. Now, by (3), we can consider
@ as an R/(z)-module giving a canonical isomorphism of complexes

(1.5.23) Pe ®r R/(x) Qpr/2) Q = Pe ®p Q.
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Taking homology of the complex on the left in (1.5.23) then gives
Hi(Pe @ R/ (2) @) Q) 2 T/ (P[P, Q)
while taking homology of the complex on the right gives
H;(P. ®r Q) = Tor;(P, Q)
producing a canonical isomorphism as claimed. O

Coming back to the proof from before, we have that (R, m) is a regular local
ring of Krull dimension d > 0. We let € m be a part of a minimal generating set
for m. Then R/(z) is also a regular local ring and now Kr.dim(R/(z)) = d — 1.
Applying Lemma 1.5.20 with P = N and @ = R/m shows that

Tor;_1(N, R/m) = Tor\")(N/xN, R/m).

Our induction hypothesis along with the equality of (2) and (3) from Proposition
1.5.16 imply that the latter vanishes if ¢ > d since d > 1. Therefore, because of
the isomorphism in (1.5.19), we have that Tor;(M, R/m) = 0 if ¢ > d. Since this
implies that pd(M) < d, by the equivalence between (2) and (3) of Proposition
1.5.16 again, we’re done! O

Corollary 1.5.24. Suppose that (R, m) is a reqular local ring with Krull dimension
Kr.dim(R) = d. Let M be a finitely generated R-module. Then pdp(M) <d. O

Corollary 1.5.25. Suppose that (R, m) is a reqular local ring with Kr. dim(R) = d.
Then G(R) =2 Z and CI(R) = 0.

Proof. If M is a finitely generated R-module, then any minimal free resolution of
M is finite by Corollary 1.5.24. If a minimal free resolution of M is given

0— R — ... 5 R s M — 0

then, by Remark 1.4.2, we there is an equality

(M) = (~1)'ni[R]
i=0
inside G(R). Since (R, m) is an integral domain, the rank map of Remark 1.4.9
then gives an isomorphism G(R) = Z.
For the second claim we note, since R is integrally closed by Proposition 1.5.7,
that it follows from Theorem 1.4.19 and its proof that CI(R) = 0. [
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Corollary 1.5.26. If R is a regular ring, then R is locally factorial.

Proof. For any prime ideal p C R, the local ring (R,, pR,) is integrally closed, by
Proposition 1.5.7, and has CI(R,) = 0, by Corollary 1.5.25. Hence R, is a UFD
by Corollary 1.3.33. O]

Example 1.5.27. Let k be an arbitrary field, and let R = k[z,y, 2]/(zy — 2?) be
the coordinate ring of the cone from Example 1.3.37. Then R is not regular since
the localization Ry, at the maximal ideal m = (x,y, z) is not a regular local ring.
Indeed, Kr.dim(Ry) = 2 but we saw in Example 1.3.37 that dimp/m(m/m?) = 3.
This fact was used directly in our argument that R was not locally factorial.

The last implication of Theorem 1.5.12 is also proved by an induction argument.
After we finish the proof of this implication, we will have completed the entire proof
of Theorem 1.5.12. This will be the end of our study of the homological properties
of regular local rings.

Proof of (3) = (1). Suppose that (R, m) is a Noetherian local ring that has the
property pdz(R/m) < co. We need to show that this implies that R is regular.
As a first case, let’s suppose that Kr.dim(R) = 0 so that R is an Artinian local
ring and m is the unique prime ideal of R.

Then one of the following cases holds: either pdz(R/m) = 0 or pdg(R/m) > 0.
If pdp(R/m) =0, then R/m is a free R-module which implies m = 0. Otherwise
we have that pdgz(R/m) > 0 and any minimal free resolution for R/m ends on the
left with an injection

0— R®" & Rom ...

having the property that ¢ ®idg/m = 0 and for some m,n > 1. However, if m # 0,
then there is an integer r > 0 with m” # 0 and m"™! = 0. It follows that no such
injection can exist. Indeed, if we represent a homomorphism ¢ : R¥" — R%™ ag
an m X n-matrix with respect to the standard bases for R®" and R®™ then

T11 0 Tin

Tm1i * Tmn

and, if ¢ ® Idg/m = 0, we must have that z;; e mforalll1 <7<mand1<j<n
by the comments above Remark 1.5.15. If we choose 1, ...,y, € m" with y; # 0
for some 1 <7 < mn, then v = (y; ---y,)" is a nonzero vector in the kernel of ¢.
Now assume that, for every local Noetherian ring (R, m) with Kr. dim(R) < d,
the assumption pd,(R/m) < oo implies that R is regular. For our induction step,
we suppose that (R, m) is an arbitrary Noetherian local ring with Krull dimension
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1 < Kr.dim(R) = d having the property that pdz(R/m) < co. We want to prove
that such a ring R is necessarily regular.

In order to use our induction hypothesis, we first show that there exists an
element z € m\ m? which is not a zero divisor in R. The set of all zero divisors in R
is precisely the union of those prime ideals p; which occur as radicals of the primary
ideals q; appearing in a primary decomposition of the zero ideal (0) = (_, 4,
by [AMG69, Proposition 4.7] (i.e. the primes associated to 0). So, if there was a
containment .

mC U p; Um?,
i=1
then, since m is not contained in m? as Kr.dim(R) > 1 [AMG69, Proposition 8.6],
we must have m = p; for some 1 < i < s by prime avoidance [Stal9, Tag 00DS].
However, if every element of m is a zero divisor then, similar to the proof of the
zero dimensional case, no minimal free resolution of R/m can be finite as any
homomorphism ¢ : R — R®™ with ¢ ® idg/m = 0 has nontrivial kernel.

If x € m\ m? is any element which is not a zero divisor of R, then R/(z) is
a local Noetherian ring and Kr.dim(R/(z)) = d — 1 by [AMG69, Corollary 11.18].
The maximal ideal of R/(z) is m;y = m/(x) and the residue field of R/(z) is R/m.
So, if we can show that pdp,,)(/2/m) < oo, then the induction hypothesis implies
that R/(x) is regular. Since we can see directly that

dimp/m(m/m?) = dimg/m(m;/m}) + 1

it follows if R/(x) is regular, then R is regular as well. So, to complete the proof,
it suffices to show that pdp,,)(R/m) < oo. This is a direct consequence of a more
general claim which is proved in the next lemma (set M = R/m). O

Lemma 1.5.28. Let (R,m) be a Noetherian local ring, and let M be a finitely
generated R-module. Suppose that an element x € m \ m? satisfies the following
properties:

(1) x is not a zero divisor in R,

(2) M = 0.
Then, if M has finite projective dimension as an R-module, we also have that M
has finite projective dimension as an R/(x)-module.

Proof. Since M = 0, we must have pdgz(M) > 1. We're going to reduce to the
case that pdz(M) = 1. So, suppose that pdp (M) > 1. Then, considering M as a
finitely generated R/(z)-module, we can find a short exact sequence

(1.5.29) 0= K — (R/(2)* - M —0
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with n a positive integer and K the appropriate kernel. As x is not a zero divisor
in R, the R-module (R/(x))®" has projective dimension equal to 1 with an explicit
resolution given by a direct sum of n copies of the sequence

0—+R5R— R/(x)—0.

Considering K as an R-module, this gives an equality pdz(K) = pdz(M) — 1 by
Corollary 1.5.17. But, if pdp,(,)(K) is finite then pdy (M) is also finite because
we can concatenate an R/(z)-resolution of K with the sequence (1.5.29). Hence,
up to replacing M by K and repeating this process, we can assume pdg(M) = 1.

Once we're in the case that pdz(M) = 1, the proof is entirely linear algebra.
Choose a minimal free resolution for M like

(1.5.30) 0— R® % RO Ly 01 5 0
with some integers m,n > 1. Localizing at = yields an exact sequence

®Id
0 — Ron L2018, pem )

since M ®p R, = 0. From this we find that n = m.

For any integer ¢+ with 1 < ¢ < m, if we denote by e; the ith standard basis
element for R®™ then

j(ze;) = xj(e;) =0

since M = 0. By exactness of (1.5.30), this means that there is a v; € R®" with
¢(v;) = we;. Let ¥ be the n X n-matrix whose ith column is the vector v; so that,
if we represent ¢ with an n X n-matrix with coefficients in m, we have ¢ = =1,
for the n x n-identity matrix I,,.

From the equality ¢v» = x1,, it follows that v is invertible; proof of this claim,
which requires only some elementary linear algebra, is outlined in Exercise 1.5.2.
Altogether, this implies that there is a commutative diagram with exact rows:

0 y R®" 4 R — & (R/(2))™" —— 0

| |

0 , Ren %, Ren oM s 0.

Since the vertical arrows on the left and in the middle are both isomorphisms, it
follows that the vertical arrow on the right is an isomorphism too. So M had finite
projective dimension as an R/(z)-module after all. ]

It’s useful, in practice, to have a way to check whether a given ring R is regular
without needing to check that equality in (1.5.1) holds for the localization (R,, pR,)
at each prime ideal p C R. Together, the next corollary and the following remark
give an often-times more efficient method for checking whether the coordinate ring
of a variety over an algebraically closed field is regular.
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Corollary 1.5.31. If (R,m) is a regular local ring and, if p C R is a prime ideal,
then R, is also a regular local ring. Thus, the following are equivalent conditions
for a ring S':

(1) S is reqular,

(2) Sy is a regular local ring for all prime ideals p C S,

(3) Sw is a regular local ring for all mazimal ideals m C S.

Proof. Let p C R be a prime ideal. Since R is regular, any minimal free resolution
of the R-module R/p is finite:

0— R¥" — ... — R®" — R/p — 0.

If we localize such a resolution at the prime p, then we get a finite resolution of the
R,-module (R/p) ®p Ry = R,/pR,. As this is the residue field of the local ring R,
it follows that pdg (R,/pR,) < co. Hence R, is regular by Theorem 1.5.12. [

Remark 1.5.32. Let k be an algebraically closed field and let R = k[xy, ..., z,]/I
be the quotient of the given polynomial ring over k by an ideal I = (fi,..., fmm)-
By Hilbert’s Nullstellensatz [Rei95, §5.3, Proposition], an ideal m of R is maximal
if and only if there are elements aq, ..., a,, € k so that both

m=(x; —a,..., T, — a,)
and there is simultaneous vanishing
filar,...;a,) =0, ..., fm(ay,...,a,) =0.

If R is as above and m = (z1 — aq, ..., x, — a,,) is a specific maximal ideal, then
one can show that the local ring Ry, is regular if and only if the Jacobian matrix

df;
Ja = (—f(a)> where a = (ay, ..., a,)
Ox; 1<i<m, 1<j<n

has rank J, = n — ht(m), see [Liu02, Ch. 4, §2, Theorem 2.19]. See Exercise 1.5.3
for an extension of this result along with an example.
(GLOBAL PROPERTIES OF REGULAR RINGS

With the local theory of regular rings taken care of, we are now ready to globalize
our results.

Proposition 1.5.33. Let R be a Noetherian ring, and let M be a finitely generated
R-module. Then the following are equivalent:
(1) there is an upper bound pdp(M) < n on the projective dimension of M,
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(2) for every R-module N, we have Ext};™ (M, N) = 0,
(3) the functor Extly (M, —) is right exact,
(4) if whenever there is an exact sequence of R-modules

O—-P,—>P,1— - —>F—>M=0
such that P; is projective for all i < n, then P, is projective.
Proof. Assume (1), so that there is a finite resolution
O—=PFP, ==K —=M=0

with some finitely generated and projective R-modules P; for 0 < i < n. If N is
an arbitrary R-module, then Ext’ (M, N) can be computed by omitting M from
the above resolution, applying the functor Homg(—, N), and taking homology at
the ith position of the resulting complex. Hence Ext’s"' (M, N) = 0, showing (2).
Assume (2), and let
0-A—-B—=-C—=0

be a short exact sequence. Then the long exact sequence of Exty, (M, —) associated
to this short exact sequence ends with

o= Exth (M, A) — Ext’y(M, B) — Ext’h (M, C) — Ext%™ (M, A) = 0.

Thus (3) holds.
Now assume (3). If n = 0, then (4) immediately follows from Remark 1.1.2.
So, assume n > 0 and let

(1.5.34) 0= Py— Py == Py— M =0

be an exact sequence with P; projective for all 0 <7 < n. We want to show that

P, is projective. We do this by checking directly that, given a surjection L — IV,

the R-module P, satisfies the necessary lifting condition of Definition 1.1.1.
Truncating the sequence (1.5.34) on the left, we get exact sequences

0—-P,—-P,1—P -0 and 0P, =P, 2—-—>M=—0.
The sequence on the left above provides us with a connecting homomorphism

Hompg(P,, L) — Extg(P

n—1»

L)

which is surjective, since Extk(P,_1, L) = 0 as P,_; is projective by assumption,
and which has kernel exactly the image of Homg(P,_1, L) in Homg(P,, L). If we
truncate the sequence on the right in the above, we obtain a short exact sequence

0P ,—P,o—P ,—0
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from which we get a connecting homomorphism

Extp(P,

n—1»

L) — Exth(P,

n—27

L).

Moreover, since P, s is projective by assumption, this latter connecting morphism
is an isomorphism. Continuing in this fashion and composing all of the maps gives
an exact sequence

Homg(P,-1, L) — Homg(P,, L) — Ext"(M, L) — 0.

Doing the same procedure with N instead of L yields a similar short exact
sequence and, by the functorality of the connecting homomorphism, these two
sequences fit into a commutative diagram

Homg(P,_1, L) —— Homg(P,, L) —— Ext"(M,L) —— 0

! | l

Hompg(P,-1, N) —— Hompg(P,,N) —— Ext"(M,N) —— 0.

By assumption, the rightmost vertical arrow in this diagram is a surjection.
Since P,_; is assumed projective, the leftmost vertical arrow is also a surjection.
By a diagram chase, it follows that the middle vertical arrow is then a surjection.
Hence P, is projective as claimed, proving (4).

Finally, assume (4). Since M is finitely generated, we can find an integer jo > 0
and a surjection R®% — M. Since R is Noetherian, the kernel of this map is also
finitely generated. Hence we can construct an exact sequence

0— K — R%nt — ... 5 R% 5 M -0

with K an appropriate kernel. It follows from (4) that K is a projective R-module.
Since R is Noetherian, we must also have that K is a finitely generated R-module.
Hence pdz(M) < n, which is (1). O

The next result shows the truly extraordinary connection between homological
algebra and algebraic geometry. It follows directly from, and it can be seen as a
partial globalization of, the Auslander-Buchsbaum theorem (Theorem 1.5.12).

Theorem 1.5.35. Suppose that R is a Noetherian reqular ring of Krull dimension
Kr.dim(R) = d for some integer d > 0. Let M be a finitely generated R-module.
Then pdp(M) < d.

Proof. In order to prove the theorem it’s sufficient, by Proposition 1.5.33, to check

that Ext% (M, N) = 0 for every R-module N. So let N be an arbitrary R-module
and let

(1.5.36) o= P 5 P> M—=0
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be a resolution of M by finitely generated and projective R-modules P; (such a
resolution exists since R is Noetherian and M is finitely generated).

Now we can go in two different directions. We can either first localize (1.5.36) at
a prime ideal p C R, and then apply the functor Hompg, (—, N,). Or, alternatively,
we can apply the functor Homg(—, N) to (1.5.36) and then localize at p C R. Both
routes produce a complex of R,-modules and the two complexes are comparable
by the canonical isomorphisms of Lemma 1.1.9, i.e. there is a commutative ladder
with complexes for rows like:

- — Hompg(Piy1, N), —— Hompg(P;, N), —— Homp(P,—1,N)y — - --

- — Hompg, (Pi+1)p, Ny) — Homp, ((F)p, Np) — Hompg, ((Pi—1)p, Ny) — -
This implies, in particular, that for each ¢ > 1 there is a canonical isomorphism
(1.5.37) Extr(M, N) ®g R, = Extiy (My, Ny).

Since R is regular with Kr. dim(R) = d, the local ring R, satisfies the conditions of
Corollary 1.5.24. From Proposition 1.5.33 applied to R,, this gives the vanishing

Extjla:l(Mp, N,) =0 for all prime ideals p C R.
Together with (1.5.37), this implies Ext%™ (M, N) = 0 as desired. O

We now have all of the homological tools needed to prove the main theorem of
this section: Theorem 1.5.3. Recall that there is a canonical group homomorphism

vr: K(R) = G(R) [Pl [P]

induced by the inclusion Pyy(R) C M;y,(R) of the free abelian group Py,(R) on
isomorphism classes of finitely generated projective R-modules into the free abelian
group M;,(R) on isomorphism classes of all finitely generated R-modules.

Proof of Theorem 1.5.3. As per the statement of the theorem, we're assuming that
R is a regular ring of finite Krull dimension and we want to show that the canonical
homomorphism ¢ is an isomorphism. To do this, we construct an inverse to ¢g.
For any finitely generated R-module M, choose a finite resolution of M by finitely
generated and projective R-modules (which exists by Theorem 1.5.35):

(1.5.38) 0—=P,—--—=F—M-—=0.

We can then define a group homomorphism

P My(R)—» K(R) M~ Y (~1)[P].
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If we can show that p descends to map p : G(R) — K(R), i.e. if we can show that
there is an equality p(M) = p(L) + p(N) for any short exact sequence of finitely
generated R-modules

0—-L—-M—N—D0,

then p will clearly be the desired inverse. The proof now has two main-steps which,
in both cases, reduce to a formal argument in homological algebra.

First, we observe that if we are given any other finite resolution of a fixed
finitely generated R-module M, say

0—>P, —- = FB—M=0,

then this resolution defines the same element of K (R) as the one used in (1.5.38)
to define p(M), i.e. there is an equality

(1.5.39) pOM) =3 (=1)'[R] = > _(=1)'[P]

as elements of K (R). To see this, denote by P, and P, the two resolutions (omitting
the M term). Then, since both P, and P, are made up of projective R-modules,
there is a quasi-isomorphism of complexes f : Py — P, by [Wei94, Theorem 2.2.6].
The mapping cone C(f), of f is then an exact complex which looks like

= P®P P 1®&P P ®P ,— - — P —0.
Hence, applying Exercise 1.2.4 to C(f)., we get an equality
0=[F]+ D (-1)'Pa® P =) (-] =Y _(-1)'[A]
i>1 i>0 i>0

which immediately implies the equality in (1.5.39).
Now suppose that we’re given a short exact sequence of finitely generated R-
modules such as
0—+L—-M—=N-—=0.

Assume that the resolution of L used to define p(L) is
0—-—P —.--- > P —L—0,

with finitely generated projective R-modules P/, and similarly for NV
0= =P == F =+ N=0

with finitely generated projective R-modules P;. The Horseshoe lemma [Wei94,
Lemma 2.2.8] then shows that there is a finite resolution of M with terms the sum
of those terms from the given resolutions of L and NV,

(1.5.40) 0= -->PaP - =P aP/—M-=O0.
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Since the class of (M) inside K (R) is independent of the choice of finite resolution,
by the equality from (1.5.39), it follows from the existence of the resolution in
(1.5.40) that p(L) + p(N) = p(M) as we had indicated. O

DEDEKIND DOMAINS

We conclude, here in the last part to this section, with the following result on the
relationship between K-theory and G-theory of Dedekind domains.

Theorem 1.5.41. Let R be a fixred Dedekind domain. Then there is a commutative
diagram with exact rows

1 — Pic(R) —— K(R) —*- Z > 0
(1.5.42) l on H
0 —— CI(R) —— G(R) 2~ 7 > 0.

Here the leftmost vertical arrow ¢, : Pic(R) — CI(R) is the homomorphism of
Theorem 1.3.27 and the middle vertical arrow ¢ : K(R) — G(R) is the canonical
homomorphism satisfying pr([P]) = [P].

Theorem 1.5.41 doesn’t rely on the fact that ¢g is an isomorphism for a
Dedekind domain R (which is a consequence of Theorem 1.5.3 and Example 1.5.6).
Since we know that the homomorphism ¢, : Pic(R) — CI(R) is an isomorphism for
a Dedekind domain R (because R is locally factorial, Remark 1.3.32), this theorem
gives an alternative proof that ¢g is an isomorphism for any Dedekind domain R.

There are still two maps in the diagram (1.5.42) whose definition deserves
explanation. First, the existence of an injective homomorphism CI(R) — G(R) is
a direct consequence of Theorem 1.4.19 and its proof; specifically, in this case we
have F2G(R) = 0 since Kr.dim(R) = 1, as R is a Dedekind domain, so that C1(R)
is isomorphic with the subgroup of G(R) generated by classes [R/p] for nonzero
prime ideals p C R. As for the remaining map Pic(R) — K(R), let’s try to guess
how this arrow should be defined (rather than giving the definition outright).

Since we expect that we should be able to show that ¢ is an isomorphism, if we
take an element [R/p] € G(R) for a nonzero prime ideal p C R then there should
be an element of K (R) mapping to [R/p]. A finite resolution of R/p by projective
R-modules is easy to find since every nonzero ideal in a Dedekind domain is finitely
generated and projective:

0—=p—>R—R/p—0.

As we also have ¢;([p]) = [R/p], we must have that the map Pic(R) — K(R) is
defined by sending the class of a prime ideal [p] to [R] — [p]. To check that this is
a well-defined homomorphism takes some work (and a couple lemmas).
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Lemma 1.5.43. Let R be any Dedekind domain and let M be a finitely generated
projective R-module. Then there exist ideals Jy, ..., J, C R and an isomorphism of

R-modules
M=JL& & J,.

In particular, any locally free R-module M of finite rank is isomorphic to a direct
sum of invertible modules.

Proof. The proof is by induction. By Theorem 1.1.10 we know that M is a direct
summand of a free module R®" for some n > 1. The basis for our induction is the
case when n = 1. In this case, we find that M is an R-submodule of R itself, so
M is isomorphic with an ideal of R.

Assume that, for all 1 < k < n, every finitely generated projective R-module
with an embedding into R®* is isomorphic to a sum M = J; @ --- @ J;, of ideals
Ji, .y € R If M £ 0 is now embedded into R®™, then we can project to the
last coordinate to get a map

m: M C R — R.

If 7(M) = 0, then M actually embeds into the first summand of R®"~1 @ R = R®"
and we can conclude by the induction hypothesis. If 7(M) # 0 then n(M) = J,
is a nonzero ideal of R which is also finitely generated and projective by Lemma
1.3.13 and Proposition 1.3.4 since R is a Dedekind domain.

By the definition of projectivity, we get a map J,, — M fitting into the following
commutative diagram below.

In

ko ’

M "= J, > 0

The splitting lemma shows that M is a direct sum M = K & J,, with K = ker(m).
As a summand of M, the R-module K is also finitely generated and projective.
The inclusion M C R®" embeds K into the first summand of R®"~!' @ R = R®".
So by the induction hypothesis, there is an isomorphism K = J; & --- & J,_; for
some ideals Ji,...,J,_1 C Randthus M =2 J, ®--- D J,. ]

Lemma 1.5.44. Let R be a Dedekind domain with field of fractions F. Then for
any pair of fractional ideals I, J C F there is an isomorphism of R-modules

I&J=RBI1J
Hence also for any n > 2 fractional ideals 14, ..., 1, C F' there is an isomorphism

Lo oL 2Rl - I,

92



Proof. We first prove the unrelated claim that if I, J are two fractional ideals for
a Dedekind domain R, then there are elements z,y € F so that x/,yJ C R are
two relatively prime ideals, i.e. I and y.J are both ideals of R and zI + yJ = R.

To do this, we can assume that both I and J are already ideals of R, and not
just fractional ideals for R, by multiplying I and J by suitable elements of R. In
this case, let J = p|' - - - p7* be the unique prime decomposition of the ideal J with
r; > 0 for each 1 <4 < s. For each such i, pick an element a; so that

a; € ]_1131"'Pi—1pi+1"'ps\]_lpr"]ﬂs-

Let I' = a; R be the fractional ideal generated by a;. We have that

ai]:[],C11_1131"'131‘—1Pi+1"'¥33:Pl"'Pi—1P¢+1"'Ps,

and
a;l = 1T 7 [I_lpl---ps =pPr-Ps
hence a;I C p; for all j # i. Moreover, we have a;,I ¢ p; since, if a;I C p;, then

a;l C()pi=p1---ps
=1

with equality on the right from [AMG69, Proposition 1.10].
If s = 1 then we're done. Otherwise, let @ = >"7 | a;. Then al is an ideal since

al C iail = R.
i=1

If there was a containment al C p; for some ¢, then we’d find that

a;] Cal +) a;l Cp;,
i

so al ¢ p; for any 1 <4 < s. Thus al and J are relatively prime.

To prove the first claim of the lemma, let I, J be fractional ideals for R. By the
previous paragraph, we can find z,y € F sothat I 2 ] = P and J = yJ = () are
relatively prime ideals in R. Then IJ = PQ and, by applying [AM69, Proposition
1.10] again, we have equality PQ = P N @ so that there is an exact sequence of
R-modules

x—(z,x)

0— PQ U pag !

z,Y) =Ty

R—0

which is, moreover, right-split since R is free. The second claim of the lemma
follows immediately from the first, so we're done. m
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Proof of Theorem 1.5./1. We're going to prove that the map
h:7Z @ Pic(R) — K(R),

defined by sending a pair (n, [L]) of the sum Z @ Pic(R) to n[R]+[R]—[L] in K(R),
is an isomorphism. The top row of the diagram in (1.5.42) is then given by the
inclusion Pic(R) C K(R), via this map h, followed by the projection from K(R)
to Z. Checking commutativity of the diagram was done above Lemma 1.5.43.

First of all, the map h is a group homomorphism: if we have two arbitrary
elements (nq, [L1]) and (nq, [La]) of Z & Pic(R), then

h((n1, [L1])) + h((n2, [La])) = mi[R] + [R] — [L1] + no[R] + [R] — [Lo]
— (ny +n9)[R] + 2[R] — (L1 & L)
= (n1 +n2)[R] + [R] — [L1 ® Ly]
= h((n1 + ng, [L1 ® La])).

+
+

Here we’ve used Lemmas 1.5.44 and 1.3.6 to substitute the relation

[L1 & Lo| = [R] + [L1 ® Lo

~Y

when going from the second to third equality (noting that L; ® Ly = L Lo since
every ideal of R is flat as an R-module).

Now the map h is surjective: if M is any locally free R-module of finite rank,
then by Lemma 1.5.43 there are ideals I, ..., I,, of R, and with n = rk(M), together
with an isomorphism M = I; & --- & I,,. Hence

h((—n,[[1 @ - @ 1L,]) =1 —=n)R| - [ & ® I,]
=(1-n)R+n—-[R-[L& &I, =—-][M|].

The map h is also injective. If z = (n, L) is in the kernel of h then
0 = 1k(0) = rk(h(x)) = rk(nlR] + [R] — [L71]) = n.
Comparing with the determinant homomorphism det : K(R) — Pic(R) gives
[R2] = det(0) = det(h((0, [L]))) = det([R] — [L]) = [L™']

as elements of Pic(R), hence R = L as R-modules. O

EXERCISES FOR SECTION 1.5

1. Let k be a field. Find a k-algebra presentation for the coordinate ring of the
tangent cone of the nodal cubic, with coordinate ring R = k[z,y|/(y* — 23 —2?),

at the origin. Draw a picture of the nodal cubic and its tangent cone.
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2. Let (R,m) be an arbitrary local ring. Suppose there is an element x € m \ m?.
Let ¢ be an n x nm-matrix with coefficients in m for some n > 1, let 1) be an
n X n-matrix with coefficients in R, and suppose that there is an equality

with I,, the n x n-identity matrix. We're going to show, in this exercise, that
the given assumptions imply ) is invertible. This result is used in the proof of
Lemma 1.5.28 (and therefore also in the proof of Theorem 1.5.12).

(a)
(b)

The proof of this claim goes by induction on n with the case n = 1 being
used to start the induction. Prove the claim in the case n = 1.

Assume now that the claim holds for all square matrices up to size n x n.
We need to reduce from the n x n-matrix case to the case of matrices of
size (n — 1) X (n — 1). To do this, note that ¢ does not have all of its
coefficients contained in m. Hence, up to multiplication by n x n-invertible
matrices P and (), we can assume that there is an equality

¥ = PYQ = ((1) £0)

with 1 a matrix of size (n — 1) x (n — 1) with coefficients in R.
Set ¢ = Q '¢P~! and note ¢’ has coefficients in m. There is an equality

¢ = (Q P ) (PYQ) = .

Simultaneously, if we write

A RSN v?
¢_(U ¢0)7

where my; is an element of m, where both v and u are (n — 1) x 1-column
vectors, and with ¢g a (n — 1) x (n — 1)-matrix, then

¢/1/Jl _ (mn UT) (1 O) _ (mn 0 )
u  ¢o) \0 o 0 ¢otbo)
Therefore, we must have ¢g1pg = x1,,_1. Conclude that v is invertible.

Let R and S be two Noetherian rings, and suppose that there is a ring
map f: R — S which gives S the structure of a faithfully flat R-module.
Suppose that S is regular. Prove that R is then regular as well.

(Hint: reduce to the case where R and S both local rings).
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(b) Let k be an arbitrary field with a fixed choice of algebraic closure k%, and
let R be a fixed finitely generated k-algebra. By part (a) of this exercise, if
R ®; k* is regular, then R is regular too. Use this observation, along with
Remark 1.5.32, to show that the ring k[z,y, 2]/(zy — 2% + 1) is regular for
any field k of characteristic not 2. Compare with Example 1.2.19.

(¢) Find an example of a field k, a field extension L/k, and a finitely generated
k-algebra R such that R is regular but R ®; L is not regular.

4.* Let R be a ring. Prove that the polynomial ring R[z] in one indeterminant x
with coefficients in R is a regular ring if R is a regular ring.
(Hint: You'll need to check that, for any prime ideal p C R[x], the localization
R[z], of R[x] at p is a regular local ring. Fix one such prime p and let ¢ = pNR.
Then R|x], is a localization of Ry[z] so it suffices to prove that R[z] is regular.
This reduces the proof to the case that R is a regular local ring. Now try to use
the fact that Kr.dim(A[z]) = Kr.dim(A) + 1 for any Noetherian ring A from
[AMG9, Chapter 11, Exercise 7].)

5. Let k be a field, and let R = k[x]/(z?).
(a) Prove that K(R) is isomorphic with Z.
(b) Prove that G(R) is also isomorphic with Z.
(c) Show that the homomorphism

vr: K(R) = G(R),

induced by the inclusion Py, (R) C My,(R), has nontrivial cokernel.

6. Find a ring R such that the canonical homomorphism g : K(R) — G(R) has
nontrivial kernel ker(pg) # 0.

7. In this exercise we prove an analog of Exercise 1.3.11 for rings of power series
in one formal variable. Specifically, we show that if R is a Noetherian regular
ring then there is a canonical isomorphism CI(R) = Cl(R[[z]]).

(a) Let R be any ring. Let R[[z]] be the ring of formal power series over R in
one formal variable z. Prove that the composition

I‘eSRHxH resR -
Pic(R) —*— Pic(R[[z]]) — Pic(R),

induced by the canonical inclusion R — R[[z]] and the canonical projection
R[[z]] — R sending z to 0, is the identity.

(b) Let R be any ring. Use both part (a) above, and part (e) of Exercise 1.2.8,
to show that both of the restriction maps from part (a) are isomorphisms.
(Hint: consider the inclusion Pic(S) C K(S)* of units for any ring S.)
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(c) Now assume that R is both Noetherian and a regular ring. Prove that the
ring of formal power series R[[x]] with coefficients in R is then a Noetherian
regular ring as well. Since a regular ring is locally factorial, Theorem 1.3.27
shows that there are isomorphisms

CI(R) = Pic(R) and CI(R[[z]]) = Pic(R][z]]).

Together with parts (a) and (b), this proves the claim. See Exercise 1.3.10

for an explicit description of this isomorphism in terms of Weil divisors.
There exist examples of rings R which are UFDs, but which are not regular,
such that the ring R[[z]] is not a UFD. For example, if k is any field then one
can take the ring R = k(t)[[a, b, ]|/ (a* + b* + t®) where ¢ is an indeterminate.
For more on this problem, see the notes of Lipman [Lip75].

8. Let R be a Dedekind domain with fraction field /" and let I C F be a fractional
ideal for R. Prove that I is generated by at most two elements, i.e. show that
there exist f,g € F so that fR+gR = 1.

(Hint: analyze the unrelated claim in the proof of Lemma 1.5.44, along with its
proof. Try to find f, g so that fI"' +gI~' = R.)

1.6 K-THEORY OF A SEMISIMPLE ALGEBRA

For use in future sections, we define here an analog of the K-group for an arbitrary
associative, but possibly noncommutative, ring A. We then study these K-groups
in detail in the more restrictive case that A is a semisimple k-algebra for k a field.
Since in the study of algebraic geometry one typically focuses on rings which are
commutative, we first recall the basic structure theorems on noncommutative rings
which will be of use to us. One can find references to the results in this section in
either the definitive [Row91] or the more leisurely [FD93].

We say that the ring A is left-semisimple if A is semisimple when considered as
a left A-module under itself. So A is left-semisimple if there exists both a collection
of irreducible left-ideals Iy, ..., I,, (meaning that each of the ideals I; themselves
contain no proper left ideal of A) and an isomorphism of left A-modules

AL @ D Ly

We say that A is right-semisimple if it satisfies the analogous condition replacing
left everywhere with right.

The center of a ring A, denoted Z(A), is the collection of all elements x € A
so that zy = yx for all y € A, i.e.

Z(A)={x € A:xy=yz forall y € A}.
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The center is, in a natural way, a subring of A. If k is a field, then we say that A
is a k-algebra to mean that there is a fixed ring homomorphism k£ — Z(A) C A
which allows us to consider the action of multiplication by elements of k£ on A.

Theorem 1.6.1. Fix a field k and let A be a finite dimensional and associative
k-algebra. Then the following statements are true:
(1) A is left-semisimple if and only if A is right-semisimple.
(2) A is left-semisimple (resp. right-semisimple) if and only if every short exact
sequence of left (resp. right) A-modules splits.
(3) A is left (or right)-semisimple if and only if A is isomorphic to a Cartesian
product
AZ A x---x A,

of simple k-algebras A, ..., Ap,.

It therefore makes sense, when A is a finite dimensional and associative k-
algebra, to say that A is semisimple without specifying whether it is left or right
semisimple (which we now do). We also point out, in a conflict of terminology,
that a ring A is simple if the only two-sided (both left and right) ideals I C A are
I =0 and I = A. In particular, a simple ring A may not be simple as either a
left, or as a right, module under itself (i.e. there may be left ideals, or right ideals,
which are not simultaneously two-sided ideals).

Theorem 1.6.1 allows us to describe explicitly the structure of a left (or right)
module M under A in terms of a decomposition of A into a product of simple rings.
Namely, any such decomposition of A induces a decomposition on the module M.

Corollary 1.6.2. Suppose that A # 0 is a finite dimensional, associative, unital,
and semisimple k-algebra. Decompose A as a product

A A x--- XA,

of nonzero simple k-algebras Ay, ..., Ay,. Then every left (resp. right) A-module M
can be decomposed (uniquely) into a product

M= M; x--- x M,
with M; a left (resp. right) A;-module.

This means that the study of modules under a semisimple k-algebra A as in
Theorem 1.6.1 reduces to the study of modules under certain simple k-algebras.
For this we have the following structural result:

Theorem 1.6.3. Fix a field k and let A be a finite dimensional, associative, and
simple k-algebra. Then the following statements are true.
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(1) The center Z(A) of A is field extension F of k of finite degree [F : k] < oc.

(2) There exists an F-algebra D with division (meaning that all nonzero elements
in D have two-sided multiplicative inverses) and an isomorphism A = M, (D)
between the ring A and the ring of n X n-matrices with coefficients in D.

(3) Ewvery simple left (resp. right) A-module M is isomorphic, as an A-module,
to the direct sum M = D®" considered with the canonical action by left
(resp. right) multiplication compatible with a fized isomorphism A = M, (D).
Moreover, every left (resp. right) A-module M is isomorphic to a sum of
simple left (resp. right) A-modules.

To summarize: an associative, semisimple k-algebra A having finite dimension
as a k-vector space admits a finite collection of finite extensions Fi/k, ..., Fy,/k and
an isomorphism

A M, (D) x - x M, (D)

with division Fj-algebras D; for ¢« = 1,...,m; moreover any such decomposition
completely determines the structure of all left or right A-modules.

Example 1.6.4. If k is an algebraically closed field, then there are no finite
dimensional division algebras over k other than k itself. That is, if D is a finite
dimensional division k-algebra then any nonzero d € D defines ring homomorphism

qbdik’[l‘] — D

uniquely determined by the condition that ¢4(x) = d. The kernel of ¢, is a nonzero
ideal (by the finiteness of the dimension of D over k) which is moreover maximal
(since D is a division k-algebra). Since k is algebraically closed, this ideal is of the
form ker(¢q) = (x — ¢) for some element ¢ € k. Hence d = ¢ € k as well.

Consequently, if k is an algebraically closed field then any simple and associative
k-algebra A of finite dimension and with center Z(A) = k is isomorphic to a matrix
ring M, (k) for some n € N. Conversely, if k is an arbitrary field and if A is an
associative and finite dimensional k-algebra, then there is a natural number n and
a field extension F'/k admitting an isomorphism

A®y F = M, (F)

if and only if A = M,,(D) for some division k-algebra D with center Z(D) = k.
Algebras of this form are called central simple k-algebras.

In the setting of noncommutative rings, the definition of a projective module
still makes sense so long as one specifies whether the action of the coefficient ring is
via the left or the right. So it makes sense to define, nearly verbatim, the K-theory
of a noncommutative ring as follows.
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Definition 1.6.5. Let A be an arbitrary associative ring. Let P, ;(A) be the
free abelian group on isomorphism classes of finitely generated projective left A-
modules, i.e. let

Prgi(A) =z -M
M

where the index M varies over the choice of a representative for each isomorphism
class of finitely generated projective left A-module. Let P.,;(A) C Pyy,(A) be the
subgroup generated by elements M — L — N for each short exact sequence

O0—=L—M-—=>N-—=0

of finitely generated projective left A-modules L, M, and N. We define the left
K -theory of the ring A as the quotient group K(A) = Py (A)/Peyi(A).

We could similarly define the right K-theory of A by replacing everywhere the
word left appears in the above definition with the word right instead. Then the
right K-theory of A would be canonically isomorphic to the left K-theory K(A)
of the opposite ring A’ of A (i.e. the ring which has the same underlying abelian
group as A but with multiplication x oy = yz).

Theorem 1.6.6. Fix a field k and let A # 0 be an associative, semisimple, and
finite dimensional k-algebra with a decomposition

A=A x---x A,

into a product of finitely many nonzero simple k-algebras Ay, ..., A,,. Then the left
K-theory of A decomposes

K(A) 2 K(Ay) x -+ x K(A,)

accordingly.
Moreover, if A # 0 is an associative, simple, and finite dimensional k-algebra
then there is a natural isomorphism

under which the generator 1 of Z is mapped to the isomorphism class [M] of a
simple left A-module M.

Proof. We prove the second statement first. Suppose that A is a simple k-algebra
so, by Theorem 1.6.3, there is a finite field extension F'/k, a division F-algebra D,
and an isomorphism A = M, (D). Every left A-module M is isomorphic then to a
sum of copies of the simple module D®" and, if M is finitely generated, only finitely
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many such copies may occur. By Theorem 1.6.1 (2) all short exact sequences of
A-modules split, so K(A) = Z is additively generated by the class [D%"].

For the first statement, let M be any left A-module where now A is assumed to
be an arbitrary semisimple k-algebra. According to Corollary 1.6.2 we can write
M = My x --- x M, for some left Ay, ..., A,,-modules M, ..., M,, respectively.
For each integer ¢ with 1 < ¢ < m, there is then a canonical map

K(A) = K(Ai)

given by projecting from M to M;. If M; is a simple A;-module, then M; is also a
finitely generated and projective A-module. The associated map to the product

K(A) = K(A) x - x K(A,)

must therefore be an isomorphism since K (A) is generated by the classes of simple
A;-modules over all varying ¢ with 1 <7 < m. O]

EXERCISES FOR SECTION 1.6

1. Let @ = R Ri & Rj & Rij be a 4-dimesional R-vector space with basis the
elements 1,4, 7,ij. Define an R-algebra structure on () by letting 1 act as a
two-sided identity and with further relations

1*=—-1, j°=-1, and 115 = —Ji.

Show that @) is an associative R-algebra by constructing an isomorphism of C-
algebras @ ®g C = M,(C). Show that @ is a division R-algebra by considering
for any element x = a + bi + ¢j + dij the element z = a — bi — ¢j — dij.

2. Let k be a field and let D be a finite dimensional associative division k-algebra.
Show that for any n > 1 the ring M, (D) is left-semisimple and that any simple
left M,,(D)-module is isomorphic with D®" by utilizing the following argument.

(a) Prove the claim directly when n = 1. If M is a simple left D-module, then
consider a left submodule Dx C M generated by an element x € M.

(b) For n > 1, consider the set I, C M, (D) of matrices with all potentially
nonzero elements contained only in the rth column and with zeros every-
where else; show that I, is a left-ideal.

(c) Let 0 # M € I, be an arbitrary element. Show that M generates I, as a
left M,,(D)-module; hence I, is a simple M,,(D)-module for any 1 < r <mn.
(Hint: consider the products by elementary matrices E;, M where E; ; =
(0ik - 01j)1<ki<n and 6, . is the Kronecker delta function.)
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(d) Show that there is an isomorphism of M,,(D)-modules

{}) ]}52 A4ﬁ(l)%

1<r<n

thereby proving that M, (D) is a semisimple k-algebra. Also, if N is any
other simple left M, (D)-module, then consider the morphism

EB I, 2 M,(D) - N, zw—ay

1<r<n

for a fixed element 0 # y € N to show that [, = N for some 1 < r < n.
Hence all simple M,,(D)-modules are isomorphic with I, & D%",
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NOTATION

N the set of natural numbers {1,2,3,...}
Z>o the set of nonnegative integers N U {0}
#S  the cardinality of a set S
k a field
an associative, commutative, and unital ring
F the fraction field ' = R o) of a domain I
) the height of a prime ideal
Kr.dim(R) the Krull dimension of a ring R
) the projective dimension of an R-module M
A an associative and unital ring
A% the opposite ring of A
R*  the group of units of a ring R
R”  the integral closure of a domain R in its field of fractions
Anng(M) the R-module annihilator of M
A'M  i-th exterior power of M
Psy(R) free abelian group on isomorphism classes of finitely generated
projective R-modules
) subgroup of Py,(R) from short exact sequences
) subgroup of Pf,(R) from long exact sequences
) the K-theory of the ring R, i.e. Pry(R)/P..(R)
) free abelian group on isomorphism classes of finitely generated
R-modules
M.,(R) subgroup of M,(R) from short exact sequences
G(R) the G-theory of the ring R, i.e. M, (R)/Mc.(R)
Py i1(A)  free abelian group on isomorphism classes of finitely generated
projective left A-modules
) subgroup of Py, ,;(A) from short exact sequences
K(A) the left K-theory of the ring A, i.e. Pfgi(A)/Peyi(A)
) the set of prime ideals of height r if X = Spec(R)
) the set of codimension-r points of a scheme X
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the set of dimension-r points of a scheme X

group of height n-cycles on R

group of all cycles on R

the kernel of the map cl: Z(R) — G(R)

the group of invertible R-modules

the determinant (map, or of a module)

the group of invertible fractional ideals

the group of principal fractional ideals

the order of vanishing

the associated Weil divisor of a rational function f
the associated Weil divisor of a fractional ideal [/
the group of Weil divisors of R

the ideal class group of R, i.e. WDiv(R)/div(F™)
a restriction map from something associated with R to S
the ramification index of q over p

the first Chern class
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INDEX

Chern classes

— first Chern class for a ring 47
cycles

— associated to a prime filtration 61

— of a commutative ring 57
divisors

— Cartier divisors of a ring 49

— Weil divisors of a ring (effective,

irreducible) 40

— principal Weil divisors of a ring 43

— divisor class group of a ring 43
filtrations

— prime filtration of a module 61

— refinement of a filtration 62
fractional ideals

— fractional ideal 33

— fractional ideal product 33

— invertible fractional ideal 34

— principal fractional ideals 36
G-theory

— of a commutative ring 56
Gysin morphism

— for rings 69
K-theory

— of a commutative ring 19

— of a noncommutative ring 100
modules

— finitely generated 9

— finitely presented 9

— locally free 15
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— projective 9

— projective dimension of a 76

— left (or right) semisimple 97
order of vanishing

— of a rational function 42

— of a fractional ideal 44
prime ideals

— height of a prime ideal 39
rank

— of a free module 10

— for G(R) 60

— for K(R) 20
resolution

— by finitely generated projective

modules 76

— finite resolution 76

— length of 76

— minimal free resolution 77
rings

— center 98

— locally factorial 47

— regular 72

— regular local ring 71

— semisimple ring 97

— simple ring 98
tangent cone 72
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